{-# LANGUAGE CPP #-} #define Flt Float #define VECT_Float -- | The unit sphere in the space of quaternions has the group structure -- SU(2) coming from the quaternion multiplication, which is the double -- cover of the group SO(3) of rotations in R^3. Thus, unit quaternions can -- be used to encode rotations in 3D, which is a more compact encoding -- (4 floats) than a 3x3 matrix; however, there are /two/ quaternions -- corresponding to each rotation. -- -- See <http://en.wikipedia.org/wiki/Quaternion> and -- <http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation> -- for more information. {-# LANGUAGE MultiParamTypeClasses, GeneralizedNewtypeDeriving #-} module Data.Vect.Flt.Util.Quaternion where -------------------------------------------------------------------------------- import Data.Vect.Flt.Base import Data.Vect.Flt.Interpolate import Foreign.Storable import System.Random -------------------------------------------------------------------------------- -- * types -- | The type for quaternions. newtype Quaternion = Q Vec4 deriving (Read,Show,Storable,AbelianGroup,Vector,DotProd,Random,Interpolate) -- | The type for unit quaternions. newtype UnitQuaternion = U Vec4 deriving (Read,Show,Storable,DotProd) -- | An abbreviated type synonym for quaternions type Q = Quaternion -- | An abbreviated type synonym for unit quaternions type U = UnitQuaternion -------------------------------------------------------------------------------- instance UnitVector Quaternion UnitQuaternion where mkNormal (Q v) = U (normalize v) toNormalUnsafe (Q v) = U v fromNormal (U v) = Q v fromNormalRadius r (U v) = Q (v &* r) -------------------------------------------------------------------------------- -- * general quaternions unitQ :: Q unitQ = Q (Vec4 1 0 0 0) zeroQ :: Q zeroQ = Q (Vec4 0 0 0 0) multQ :: Q -> Q -> Q multQ (Q (Vec4 a1 b1 c1 d1)) (Q (Vec4 a2 b2 c2 d2)) = Q $ Vec4 (a1*a2 - b1*b2 - c1*c2 - d1*d2) (a1*b2 + b1*a2 + c1*d2 - d1*c2) (a1*c2 - b1*d2 + c1*a2 + d1*b2) (a1*d2 + b1*c2 - c1*b2 + d1*a2) negQ :: Q -> Q negQ (Q v) = Q (neg v) normalizeQ :: Q -> Q normalizeQ (Q v) = Q (normalize v) -- | The inverse quaternion invQ :: Q -> Q invQ (Q (Vec4 a b c d)) = Q (v &* (1 / normsqr v)) where v = Vec4 a (-b) (-c) (-d) fromQ :: Q -> Vec4 fromQ (Q v) = v toQ :: Vec4 -> Q toQ = Q -------------------------------------------------------------------------------- {- -- we use newtype deriving instead instance AbelianGroup Quaternion where (Q v1) &+ (Q v2) = Q (v1 &+ v2) (Q v1) &- (Q v2) = Q (v1 &+ v2) neg (Q v) = Q (neg v) zero = zeroQ instance DotProd Quaternion where dotprod (Q v1) (Q v2) = dotprod v1 v2 -} instance MultSemiGroup Quaternion where one = unitQ (.*.) = multQ -------------------------------------------------------------------------------- -- * unit quaternions unitU :: U unitU = U (Vec4 1 0 0 0) multU :: U -> U -> U multU (U (Vec4 a1 b1 c1 d1)) (U (Vec4 a2 b2 c2 d2)) = U $ Vec4 (a1*a2 - b1*b2 - c1*c2 - d1*d2) (a1*b2 + b1*a2 + c1*d2 - d1*c2) (a1*c2 - b1*d2 + c1*a2 + d1*b2) (a1*d2 + b1*c2 - c1*b2 + d1*a2) -- | The opposite quaternion (which encodes the same rotation) negU :: U -> U negU (U v) = U (neg v) -- | This is no-op, up to numerical imprecision. -- However, if you multiply together a large number of unit quaternions, -- it may be a good idea to normalize the end result. normalizeU :: U -> U normalizeU (U v) = U (normalize v) -- | The inverse of a unit quaternion invU :: U -> U invU (U (Vec4 a b c d)) = U $ Vec4 a (-b) (-c) (-d) -------------------------------------------------------------------------------- fromU :: U -> Vec4 fromU (U v) = v fromU' :: U -> Normal4 fromU' (U v) = toNormalUnsafe v mkU :: Vec4 -> U mkU = U . normalize toU :: Normal4 -> U toU = U . fromNormal unsafeToU :: Vec4 -> U unsafeToU = U -------------------------------------------------------------------------------- {- -- we use newtype deriving instead instance DotProd UnitQuaternion where dotprod (Q v1) (Q v2) = dotprod v1 v2 -} instance MultSemiGroup UnitQuaternion where one = unitU (.*.) = multU instance LeftModule UnitQuaternion Vec3 where lmul u v = actU u v instance Random UnitQuaternion where random g = let (n, h) = random g v = fromNormal n :: Vec4 in (U v, h) randomR _ = random -------------------------------------------------------------------------------- -- * unit quaternions as rotations -- | The /left/ action of unit quaternions on 3D vectors. -- That is, -- -- > actU q1 $ actU q2 v == actU (q1 `multU` q2) v actU :: U -> Vec3 -> Vec3 actU (U (Vec4 a b c d)) (Vec3 x y z) = Vec3 x' y' z' where x' = x*(aa + bb - cc - dd) + y*( 2 * (bc - ad) ) + z*( 2 * (bd + ac) ) y' = x*( 2 * (bc + ad) ) + y*(aa - bb + cc - dd) + z*( 2 * (cd - ab) ) z' = x*( 2 * (bd - ac) ) + y*( 2 * (cd + ab) ) + z*(aa - bb - cc + dd) -- aa = a*a ; bb = b*b ; cc = c*c ; dd = d*d ab = a*b ; ac = a*c ; ad = a*d bc = b*c ; bd = b*d ; cd = c*d -- | The quaternion to encode rotation around an axis. Please note -- that quaternions act on the /left/, that is -- -- > rotU axis1 angl1 *. rotU axis2 angl2 *. v == (rotU axis1 angl1 .*. rotU axis2 angl2) *. v -- rotU :: Vec3 -> Flt -> U rotU axis angle = rotU' (mkNormal axis) angle rotU' {- ' CPP is sensitive to primes -} :: Normal3 -> Flt -> U rotU' axis angle = U (Vec4 c (x*s) (y*s) (z*s)) where Vec3 x y z = fromNormal axis half = 0.5 * angle c = cos half s = sin half -- | Interpolation of unit quaternions. Note that when applied to rotations, -- this may be not what you want, since it is possible that the shortest path -- in the space of unit quaternions is not the shortest path in the space of -- rotations; see 'slerpU'! longSlerpU :: Flt -> U -> U -> U longSlerpU t (U p0) (U p1) = U v where v = (p0 &* y0) &+ (p1 &* y1) omega = acos (p0 &. p1) s = sin omega y0 = sin (omega*(1-t)) / s y1 = sin (omega* t ) / s -- | This is shortest path interpolation in the space of rotations; however -- this is achieved by possibly flipping the first endpoint in the space of -- quaternions. Thus @slerpU 0.001 q1 q2@ may be very far from @q1@ (and very -- close to @negU q1@) in the space of quaternions (but they are very close -- in the space of rotations). slerpU :: Flt -> U -> U -> U slerpU t (U p0') (U p1) = U v where v = (p0 &* y0) &+ (p1 &* y1) d' = p0' &. p1 (d,p0) = if d' >= 0 then ( d', p0') else (-d', neg p0') omega = acos d s = sin omega y0 = sin (omega*(1-t)) / s y1 = sin (omega* t ) / s -- | Makes a rotation matrix (to be multiplied with on the /right/) out of a unit quaternion: -- -- > v .* rightOrthoU (rotU axis angl) == v .* rotMatrix3 axis angl -- -- Please note that while these matrices act on the /right/, quaternions act on the /left/; thus -- -- > rightOrthoU q1 .*. rightOrthoU q2 == rightOrthoU (q2 .*. q1) -- rightOrthoU :: U -> Ortho3 rightOrthoU = toOrthoUnsafe . transpose . fromOrtho . leftOrthoU -- | Makes a rotation matrix (to be multiplied with on the /left/) out of a unit quaternion. -- -- > leftOrthoU (rotU axis angl) *. v == v .* rotMatrix3 axis angl -- leftOrthoU :: U -> Ortho3 leftOrthoU (U (Vec4 a b c d)) = toOrthoUnsafe $ Mat3 row1 row2 row3 where row1 = Vec3 (aa + bb - cc - dd) ( 2 * (bc - ad) ) ( 2 * (bd + ac) ) row2 = Vec3 ( 2 * (bc + ad) ) (aa - bb + cc - dd) ( 2 * (cd - ab) ) row3 = Vec3 ( 2 * (bd - ac) ) ( 2 * (cd + ab) ) (aa - bb - cc + dd) -- aa = a*a ; bb = b*b ; cc = c*c ; dd = d*d ab = a*b ; ac = a*c ; ad = a*d bc = b*c ; bd = b*d ; cd = c*d --------------------------------------------------------------------------------