module UniqueLogic.ST.TF.Expression (
T,
constant, fromVariable,
fromRule1, fromRule2, fromRule3,
Apply, arg, runApply,
(=:=),
(=!=),
sqr, sqrt,
max, maximum,
pair,
) where
import qualified UniqueLogic.ST.TF.ZeroFractional as ZeroFractional
import qualified UniqueLogic.ST.TF.Rule as Rule
import qualified UniqueLogic.ST.TF.System as Sys
import qualified Data.Ref as Ref
import Control.Monad (ap, )
import Control.Applicative (Applicative, pure, liftA, liftA2, (<*>), )
import qualified Prelude as P
import Prelude hiding (max, maximum, sqrt)
newtype T w s a = Cons (Sys.T w s (Sys.Variable w s a))
constant :: (Sys.C w, Sys.Value w a, Ref.C s) => a -> T w s a
constant = Cons . Sys.constant
fromVariable :: (Ref.C s) => Sys.Variable w s a -> T w s a
fromVariable = Cons . return
fromRule1 ::
(Sys.C w, Sys.Value w a, Ref.C s) =>
(Sys.Variable w s a -> Sys.T w s ()) ->
(T w s a)
fromRule1 rule = Cons $ do
xv <- Sys.localVariable
rule xv
return xv
fromRule2, _fromRule2 ::
(Sys.C w, Sys.Value w b, Ref.C s) =>
(Sys.Variable w s a -> Sys.Variable w s b -> Sys.T w s ()) ->
(T w s a -> T w s b)
fromRule2 rule (Cons x) = Cons $ do
xv <- x
yv <- Sys.localVariable
rule xv yv
return yv
fromRule3, _fromRule3 ::
(Sys.C w, Sys.Value w c, Ref.C s) =>
(Sys.Variable w s a -> Sys.Variable w s b -> Sys.Variable w s c -> Sys.T w s ()) ->
(T w s a -> T w s b -> T w s c)
fromRule3 rule (Cons x) (Cons y) = Cons $ do
xv <- x
yv <- y
zv <- Sys.localVariable
rule xv yv zv
return zv
newtype Apply w s f = Apply (Sys.T w s f)
instance (Ref.C s) => Functor (Apply w s) where
fmap f (Apply a) = Apply $ fmap f a
instance (Ref.C s) => Applicative (Apply w s) where
pure a = Apply $ return a
Apply f <*> Apply a = Apply $ ap f a
arg ::
T w s a -> Apply w s (Sys.Variable w s a)
arg (Cons x) = Apply x
runApply ::
(Sys.C w, Sys.Value w a, Ref.C s) =>
Apply w s (Sys.Variable w s a -> Sys.T w s ()) ->
T w s a
runApply (Apply rule) = Cons $ do
f <- rule
xv <- Sys.localVariable
f xv
return xv
_fromRule2 rule x = runApply $ liftA rule $ arg x
_fromRule3 rule x y = runApply $ liftA2 rule (arg x) (arg y)
instance
(Sys.C w, Sys.Value w a, ZeroFractional.C a, Ref.C s) =>
P.Num (T w s a) where
fromInteger = constant . fromInteger
(+) = fromRule3 Rule.add
() = fromRule3 (\z x y -> Rule.add x y z)
(*) = fromRule3 Rule.mul
abs = fromRule2 (Sys.assignment2 abs)
signum = fromRule2 (Sys.assignment2 signum)
instance
(Sys.C w, Sys.Value w a, ZeroFractional.C a, Ref.C s) =>
P.Fractional (T w s a) where
fromRational = constant . fromRational
(/) = fromRule3 (\z x y -> Rule.mul x y z)
sqr :: (Sys.C w, Sys.Value w a, P.Floating a, Ref.C s) => T w s a -> T w s a
sqr = fromRule2 Rule.square
sqrt :: (Sys.C w, Sys.Value w a, P.Floating a, Ref.C s) => T w s a -> T w s a
sqrt = fromRule2 (flip Rule.square)
infixl 4 =!=
(=!=) :: (Sys.C w, Ref.C s) => T w s a -> T w s a -> T w s a
(=!=) (Cons x) (Cons y) = Cons $ do
xv <- x
yv <- y
Rule.equ xv yv
return xv
infix 0 =:=
(=:=) :: (Sys.C w, Ref.C s) => T w s a -> T w s a -> Sys.T w s ()
(=:=) (Cons x) (Cons y) = do
xv <- x
yv <- y
Rule.equ xv yv
max :: (Sys.C w, Ord a, Sys.Value w a, Ref.C s) => T w s a -> T w s a -> T w s a
max = fromRule3 Rule.max
maximum :: (Sys.C w, Ord a, Sys.Value w a, Ref.C s) => [T w s a] -> T w s a
maximum = foldl1 max
pair ::
(Sys.C w, Sys.Value w a, Sys.Value w b, Sys.Value w (a,b), Ref.C s) =>
T w s a -> T w s b -> T w s (a,b)
pair = fromRule3 Rule.pair