module UniqueLogic.ST.Rule (
generic2,
generic3,
equ, pair, max, add, mul, square, pow,
) where
import qualified UniqueLogic.ST.System as Sys
import Data.Monoid (Monoid, )
import qualified Prelude as P
import Prelude hiding (max)
generic2 ::
(Sys.Var var, Monoid w) =>
(b -> a) -> (a -> b) ->
var w s a -> var w s b -> Sys.T w s ()
generic2 f g x y =
sequence_ $
Sys.assignment2 f y x :
Sys.assignment2 g x y :
[]
generic3 ::
(Sys.Var var, Monoid w) =>
(b -> c -> a) -> (c -> a -> b) -> (a -> b -> c) ->
var w s a -> var w s b -> var w s c -> Sys.T w s ()
generic3 f g h x y z =
sequence_ $
Sys.assignment3 f y z x :
Sys.assignment3 g z x y :
Sys.assignment3 h x y z :
[]
equ ::
(Sys.Var var, Monoid w) =>
var w s a -> var w s a -> Sys.T w s ()
equ = generic2 id id
max ::
(Ord a, Sys.Var var, Monoid w) =>
var w s a -> var w s a -> var w s a -> Sys.T w s ()
max =
Sys.assignment3 P.max
pair ::
(Sys.Var var, Monoid w) =>
var w s a -> var w s b -> var w s (a,b) -> Sys.T w s ()
pair x y xy =
Sys.assignment3 (,) x y xy >>
Sys.assignment2 fst xy x >>
Sys.assignment2 snd xy y
add :: (Num a, Sys.Var var, Monoid w) =>
var w s a -> var w s a -> var w s a -> Sys.T w s ()
add = generic3 subtract () (+)
mul :: (Fractional a, Sys.Var var, Monoid w) =>
var w s a -> var w s a -> var w s a -> Sys.T w s ()
mul = generic3 (flip (/)) (/) (*)
square :: (Floating a, Sys.Var var, Monoid w) =>
var w s a -> var w s a -> Sys.T w s ()
square = generic2 sqrt (^(2::Int))
pow :: (Floating a, Sys.Var var, Monoid w) =>
var w s a -> var w s a -> var w s a -> Sys.T w s ()
pow = generic3 (\x y -> y ** recip x) (flip logBase) (**)