module Unbound.LocallyNameless.Alpha where
import Generics.RepLib hiding (GT)
import Unbound.PermM
import Unbound.LocallyNameless.Types
import Unbound.LocallyNameless.Fresh
import Unbound.Util
import Data.List (intersect)
import Data.Maybe (isJust)
import Data.Monoid
class (Show a, Rep1 AlphaD a) => Alpha a where
swaps' :: AlphaCtx -> Perm AnyName -> a -> a
swaps' = swapsR1 rep1
fv' :: Collection f => AlphaCtx -> a -> f AnyName
fv' = fvR1 rep1
lfreshen' :: LFresh m => AlphaCtx -> a -> (a -> Perm AnyName -> m b) -> m b
lfreshen' = lfreshenR1 rep1
freshen' :: Fresh m => AlphaCtx -> a -> m (a, Perm AnyName)
freshen' = freshenR1 rep1
aeq' :: AlphaCtx -> a -> a -> Bool
aeq' = aeqR1 rep1
acompare' :: AlphaCtx -> a -> a -> Ordering
acompare' = acompareR1 rep1
close :: Alpha b => AlphaCtx -> b -> a -> a
close = closeR1 rep1
open :: Alpha b => AlphaCtx -> b -> a -> a
open = openR1 rep1
isPat :: a -> Maybe [AnyName]
isPat = isPatR1 rep1
isTerm :: a -> Bool
isTerm = isTermR1 rep1
isEmbed :: a -> Bool
isEmbed _ = False
nthpatrec :: a -> NthCont
nthpatrec = nthpatR1 rep1
findpatrec :: a -> AnyName -> FindResult
findpatrec = findpatR1 rep1
class IsEmbed e where
type Embedded e :: *
embed :: Embedded e -> e
unembed :: e -> Embedded e
data FindResult = Index Integer
| NamesSeen Integer
deriving (Eq, Ord, Show)
instance Monoid FindResult where
mempty = NamesSeen 0
NamesSeen i `mappend` NamesSeen j = NamesSeen (i + j)
NamesSeen i `mappend` Index j = Index (i + j)
Index j `mappend` _ = Index j
findpat :: Alpha a => a -> AnyName -> Maybe Integer
findpat x n = case findpatrec x n of
Index i -> Just i
NamesSeen _ -> Nothing
data NthResult = Found AnyName
| CurIndex Integer
newtype NthCont = NthCont { runNthCont :: Integer -> NthResult }
instance Monoid NthCont where
mempty = NthCont $ \i -> CurIndex i
(NthCont f) `mappend` (NthCont g)
= NthCont $ \i -> case f i of
Found n -> Found n
CurIndex i' -> g i'
nthName :: AnyName -> NthCont
nthName nm = NthCont $ \i -> if i == 0
then Found nm
else CurIndex (i1)
nthpat :: Alpha a => a -> Integer -> AnyName
nthpat x i = case runNthCont (nthpatrec x) i of
CurIndex j -> error
("BUG: pattern index " ++ show i ++
" out of bounds by " ++ show j ++ "in" ++ show x)
Found nm -> nm
data AlphaCtx = AC { mode :: Mode , level :: Integer }
initial :: AlphaCtx
initial = AC Term 0
incr :: AlphaCtx -> AlphaCtx
incr c = c { level = level c + 1 }
decr :: AlphaCtx -> AlphaCtx
decr c = if level c == 0 then error "Too many outers"
else c { level = level c 1 }
pat :: AlphaCtx -> AlphaCtx
pat c = c { mode = Pat }
term :: AlphaCtx -> AlphaCtx
term c = c { mode = Term }
data Mode = Term | Pat deriving (Show, Eq, Read)
openT :: (Alpha p, Alpha t) => p -> t -> t
openT = open initial
openP :: (Alpha p1, Alpha p2) => p1 -> p2 -> p2
openP = open (pat initial)
closeT :: (Alpha p, Alpha t) => p -> t -> t
closeT = close initial
closeP :: (Alpha p1, Alpha p2) => p1 -> p2 -> p2
closeP = close (pat initial)
data AlphaD a = AlphaD {
isPatD :: a -> Maybe [AnyName],
isTermD :: a -> Bool,
isEmbedD :: a -> Bool,
swapsD :: AlphaCtx -> Perm AnyName -> a -> a,
fvD :: Collection f => AlphaCtx -> a -> f AnyName,
freshenD :: Fresh m => AlphaCtx -> a -> m (a, Perm AnyName),
lfreshenD :: LFresh m => AlphaCtx -> a -> (a -> Perm AnyName -> m b) -> m b,
aeqD :: AlphaCtx -> a -> a -> Bool,
acompareD :: AlphaCtx -> a -> a -> Ordering,
closeD :: Alpha b => AlphaCtx -> b -> a -> a,
openD :: Alpha b => AlphaCtx -> b -> a -> a,
findpatD :: a -> AnyName -> FindResult,
nthpatD :: a -> NthCont
}
instance Alpha a => Sat (AlphaD a) where
dict = AlphaD isPat isTerm isEmbed swaps' fv' freshen' lfreshen' aeq'
acompare' close open findpatrec nthpatrec
closeR1 :: Alpha b => R1 AlphaD a -> AlphaCtx -> b -> a -> a
closeR1 (Data1 _ cons) = \i a d ->
case (findCon cons d) of
Val c rec kids ->
to c (map_l (\z -> closeD z i a) rec kids)
closeR1 _ = \_ _ d -> d
openR1 :: Alpha b => R1 AlphaD a -> AlphaCtx -> b -> a -> a
openR1 (Data1 _ cons) = \i a d ->
case (findCon cons d) of
Val c rec kids ->
to c (map_l (\z -> openD z i a) rec kids)
openR1 _ = \_ _ d -> d
swapsR1 :: R1 AlphaD a -> AlphaCtx -> Perm AnyName -> a -> a
swapsR1 (Data1 _ cons) = \ p x d ->
case (findCon cons d) of
Val c rec kids -> to c (map_l (\z -> swapsD z p x) rec kids)
swapsR1 _ = \ _ _ d -> d
fvR1 :: Collection f => R1 (AlphaD) a -> AlphaCtx -> a -> f AnyName
fvR1 (Data1 _ cons) = \ p d ->
case (findCon cons d) of
Val _ rec kids -> fv1 rec p kids
fvR1 _ = \ _ _ -> emptyC
fv1 :: Collection f => MTup (AlphaD) l -> AlphaCtx -> l -> f AnyName
fv1 MNil _ Nil = emptyC
fv1 (r :+: rs) p (p1 :*: t1) =
fvD r p p1 `union` fv1 rs p t1
aeqR1 :: R1 (AlphaD) a -> AlphaCtx -> a -> a -> Bool
aeqR1 (Data1 _ cons) = loop cons where
loop (Con emb reps : rest) p x y =
case (from emb x, from emb y) of
(Just p1, Just p2) -> aeq1 reps p p1 p2
(Nothing, Nothing) -> loop rest p x y
(_,_) -> False
loop [] _ _ _ = error "Impossible"
aeqR1 Int1 = \ _ x y -> x == y
aeqR1 Integer1 = \ _ x y -> x == y
aeqR1 Char1 = \ _ x y -> x == y
aeqR1 _ = \ _ _ _ -> False
aeq1 :: MTup (AlphaD) l -> AlphaCtx -> l -> l -> Bool
aeq1 MNil _ Nil Nil = True
aeq1 (r :+: rs) c (p1 :*: t1) (p2 :*: t2) = do
aeqD r c p1 p2 && aeq1 rs c t1 t2
freshenR1 :: Fresh m => R1 (AlphaD) a -> AlphaCtx -> a -> m (a,Perm AnyName)
freshenR1 (Data1 _ cons) = \ p d ->
case findCon cons d of
Val c rec kids -> do
(l, p') <- freshenL rec p kids
return (to c l, p')
freshenR1 _ = \ _ n -> return (n, empty)
freshenL :: Fresh m => MTup (AlphaD) l -> AlphaCtx -> l -> m (l, Perm AnyName)
freshenL MNil _ Nil = return (Nil, empty)
freshenL (r :+: rs) p (t :*: ts) = do
(xs, p2) <- freshenL rs p ts
(x, p1) <- freshenD r p (swapsD r p p2 t)
return ( x :*: xs, p1 <> p2)
lfreshenR1 :: LFresh m => R1 AlphaD a -> AlphaCtx -> a ->
(a -> Perm AnyName -> m b) -> m b
lfreshenR1 (Data1 _ cons) = \p d f ->
case findCon cons d of
Val c rec kids -> lfreshenL rec p kids (\ l p' -> f (to c l) p')
lfreshenR1 _ = \ _ n f -> f n empty
lfreshenL :: LFresh m => MTup (AlphaD) l -> AlphaCtx -> l ->
(l -> Perm AnyName -> m b) -> m b
lfreshenL MNil _ Nil f = f Nil empty
lfreshenL (r :+: rs) p (t :*: ts) f =
lfreshenL rs p ts ( \ y p2 ->
lfreshenD r p (swapsD r p p2 t) ( \ x p1 ->
f (x :*: y) (p1 <> p2)))
findpatR1 :: R1 AlphaD b -> b -> AnyName -> FindResult
findpatR1 (Data1 _dt cons) = \ d n ->
case findCon cons d of
Val _c rec kids -> findpatL rec kids n
findpatR1 _ = \ _ _ -> mempty
findpatL :: MTup AlphaD l -> l -> AnyName -> FindResult
findpatL MNil Nil _ = mempty
findpatL (r :+: rs) (t :*: ts) n = findpatD r t n <> findpatL rs ts n
nthpatR1 :: R1 AlphaD b -> b -> NthCont
nthpatR1 (Data1 _dt cons) = \ d ->
case findCon cons d of
Val _c rec kids -> nthpatL rec kids
nthpatR1 _ = \ _ -> mempty
nthpatL :: MTup AlphaD l -> l -> NthCont
nthpatL MNil Nil = mempty
nthpatL (r :+: rs) (t :*: ts) = nthpatD r t <> nthpatL rs ts
combine :: Maybe [AnyName] -> Maybe [AnyName] -> Maybe [AnyName]
combine (Just ns1) (Just ns2) | ns1 `intersect` ns2 == [] =
Just (ns1 ++ ns2)
combine _ _ = Nothing
isPatR1 :: R1 AlphaD b -> b -> Maybe [AnyName]
isPatR1 (Data1 _dt cons) = \ d ->
case findCon cons d of
Val _c rec kids ->
foldl_l (\ c b a -> combine (isPatD c a) b) (Just []) rec kids
isPatR1 _ = \ _ -> Just []
isTermR1 :: R1 AlphaD b -> b -> Bool
isTermR1 (Data1 _dt cons) = \ d ->
case findCon cons d of
Val _c rec kids -> foldl_l (\ c b a -> isTermD c a && b) True rec kids
isTermR1 _ = \ _ -> True
acompareR1 :: R1 AlphaD a -> AlphaCtx -> a -> a -> Ordering
acompareR1 Int1 _ = \x y -> compare x y
acompareR1 Char1 _ = \x y -> compare x y
acompareR1 (Data1 _ cons) c = \x y ->
let loop (Con emb rec : rest) =
case (from emb x, from emb y) of
(Just t1, Just t2) -> compareTupM rec c t1 t2
(Just _ , Nothing) -> LT
(Nothing, Just _ ) -> GT
(Nothing, Nothing) -> loop rest
loop [] = error "acompareR1 found no constructors! Please report this as a bug."
in loop cons
acompareR1 (Abstract1 _) _ = \_ _ -> EQ
acompareR1 r1 _ = error ("acompareR1 not supported for " ++ show r1)
compareTupM :: MTup AlphaD l -> AlphaCtx -> l -> l -> Ordering
compareTupM MNil _ Nil Nil = EQ
compareTupM (x :+: xs) c (y :*: ys) (z :*: zs) =
mappend (acompareD x c y z) (compareTupM xs c ys zs)
instance Rep a => Alpha (Name a) where
isTerm _ = True
isPat n@(Nm _ _) = Just [AnyName n]
isPat _ = Nothing
fv' c n@(Nm _ _) | mode c == Term = singleton (AnyName n)
fv' _ _ = emptyC
swaps' c p x | mode c == Term =
case apply p (AnyName x) of
AnyName y ->
case gcastR (getR y) (getR x) y of
Just y' -> y'
Nothing -> error "Internal error in swaps': sort mismatch"
swaps' _ _ x = x
aeq' c x y | mode c == Term = x == y
aeq' _ _ _ = True
freshen' c nm | mode c == Pat = do x <- fresh nm
return (x, single (AnyName nm) (AnyName x))
freshen' _ _ = error "freshen' on Name in Term mode"
lfreshen' c nm f = case mode c of
Pat -> do x <- lfresh nm
avoid [AnyName x] $ f x (single (AnyName nm) (AnyName x))
Term -> error "lfreshen' on Name in Term mode"
open c a (Bn r j x) | mode c == Term && level c == j =
case nthpat a x of
AnyName nm -> case gcastR (getR nm) r nm of
Just nm' -> nm'
Nothing -> error "Internal error in open: sort mismatch"
open _ _ n = n
close c a nm@(Nm r _) | mode c == Term =
case findpat a (AnyName nm) of
Just x -> Bn r (level c) x
Nothing -> nm
close _ _ n = n
findpatrec nm1 (AnyName nm2) =
case gcastR (getR nm1) (getR nm2) nm1 of
Just nm1' -> if nm1' == nm2 then Index 0 else NamesSeen 1
Nothing -> NamesSeen 1
nthpatrec = nthName . AnyName
acompare' c (Nm r1 n1) (Nm r2 n2)
| mode c == Term = mconcat [compare r1 r2, compare n1 n2]
acompare' c (Bn r1 m1 n1) (Bn r2 m2 n2)
| mode c == Term = mconcat [compare r1 r2, compare m1 m2, compare n1 n2]
acompare' c (Nm _ _) (Bn _ _ _) | mode c == Term = LT
acompare' c (Bn _ _ _) (Nm _ _) | mode c == Term = GT
acompare' _ _ _ = EQ
instance Alpha AnyName where
isTerm _ = True
isPat n@(AnyName (Nm _ _)) = Just [n]
isPat _ = Nothing
fv' c n@(AnyName (Nm _ _)) | mode c == Term = singleton n
fv' _ _ = emptyC
swaps' c p x = case mode c of
Term -> apply p x
Pat -> x
aeq' _ x y | x == y = True
aeq' c _ _ | mode c == Term = False
aeq' _ _ _ = True
acompare' _ x y | x == y = EQ
acompare' c (AnyName n1) (AnyName n2)
| mode c == Term =
case compareR (getR n1) (getR n2) of
EQ -> case gcastR (getR n1) (getR n2) n1 of
Just n1' -> acompare' c n1' n2
Nothing -> error "impossible"
neq -> neq
acompare' _ _ _ = EQ
freshen' c (AnyName nm) = case mode c of
Pat -> do x <- fresh nm
return (AnyName x, single (AnyName nm) (AnyName x))
Term -> error "freshen' on AnyName in Term mode"
lfreshen' c (AnyName nm) f = case mode c of
Pat -> do x <- lfresh nm
avoid [AnyName x] $ f (AnyName x) (single (AnyName nm) (AnyName x))
Term -> error "lfreshen' on AnyName in Term mode"
open c a (AnyName (Bn _ j x)) | level c == j = nthpat a x
open _ _ n = n
close c a nm@(AnyName (Nm r _)) =
case findpat a nm of
Just x -> AnyName (Bn r (level c) x)
Nothing -> nm
close _ _ n = n
findpatrec nm1 nm2 | nm1 == nm2 = Index 0
findpatrec _ _ = NamesSeen 1
nthpatrec = nthName
instance (Rep order, Rep card, Alpha p, Alpha t) => Alpha (GenBind order card p t) where
isPat _ = Nothing
isTerm (B p t) = isJust (isPat p) && isTerm t
swaps' c pm (B p t) =
(B (swaps' (pat c) pm p)
(swaps' (incr c) pm t))
fv' c (B p t) = fv' (pat c) p `union` fv' (incr c) t
freshen' c (B p t) = do
(p', pm1) <- freshen' (pat c) p
(t', pm2) <- freshen' (incr c) (swaps' (incr c) pm1 t)
return (B p' t', pm1 <> pm2)
lfreshen' c (B p t) f =
lfreshen' (pat c) p (\ p' pm1 ->
lfreshen' (incr c) (swaps' (incr c) pm1 t) (\ t' pm2 ->
f (B p' t') (pm1 <> pm2)))
aeq' c (B p1 t1) (B p2 t2) = do
aeq' (pat c) p1 p2 && aeq' (incr c) t1 t2
open c a (B p t) = B (open (pat c) a p) (open (incr c) a t)
close c a (B p t) = B (close (pat c) a p) (close (incr c) a t)
acompare' c (B p1 t1) (B p2 t2) =
mappend (acompare' (pat c) p1 p2) (acompare' (incr c) t1 t2)
findpatrec _ b = error $ "Binding " ++ show b ++ " used as a pattern"
nthpatrec b = error $ "Binding " ++ show b ++ " used as a pattern"
instance (Alpha p, Alpha q) => Alpha (Rebind p q) where
isTerm _ = False
isPat (R p q) = combine (isPat p) (isPat q)
swaps' c pm (R p q) = R (swaps' c pm p) (swaps' (incr c) pm q)
fv' c (R p q) = fv' c p `union` fv' (incr c) q
lfreshen' c (R p q) g
| mode c == Term = error "lfreshen' on Rebind in Term mode"
| otherwise =
lfreshen' c p $ \ p' pm1 ->
lfreshen' (incr c) (swaps' (incr c) pm1 q) $ \ q' pm2 ->
g (R p' q') (pm1 <> pm2)
freshen' c (R p q)
| mode c == Term = error "freshen' on Rebind in Term mode"
| otherwise = do
(p', pm1) <- freshen' c p
(q', pm2) <- freshen' (incr c) (swaps' (incr c) pm1 q)
return (R p' q', pm1 <> pm2)
aeq' c (R p1 q1) (R p2 q2 ) = do
aeq' c p1 p2 && aeq' c q1 q2
acompare' c (R a1 a2) (R b1 b2) =
mappend (acompare' c a1 b1) (acompare' (incr c) a2 b2)
open c a (R p q) = R (open c a p) (open (incr c) a q)
close c a (R p q) = R (close c a p) (close (incr c) a q)
findpatrec (R p q) nm = findpatrec p nm <> findpatrec q nm
nthpatrec (R p q) = nthpatrec p <> nthpatrec q
instance Alpha p => Alpha (Rec p) where
isPat (Rec p) = isPat p
isTerm _ = False
open c a (Rec p) = Rec (open (incr c) a p)
close c a (Rec p) = Rec (close (incr c) a p)
instance Alpha t => Alpha (Embed t) where
isPat (Embed t) = if (isTerm t) then Just [] else Nothing
isTerm _ = False
isEmbed (Embed t) = isTerm t
swaps' c pm (Embed t) =
case mode c of
Pat -> Embed (swaps' (term c) pm t)
Term -> Embed t
fv' c (Embed t) =
case mode c of
Pat -> fv' (term c) t
Term -> emptyC
freshen' c p | mode c == Term = error "freshen' called on a term"
| otherwise = return (p, empty)
lfreshen' c p f | mode c == Term = error "lfreshen' called on a term"
| otherwise = f p empty
aeq' c (Embed x) (Embed y) = aeq' (term c) x y
acompare' c (Embed x) (Embed y) = acompare' (term c) x y
close c b (Embed x) = case mode c of
Pat -> Embed (close (term c) b x)
Term -> error "close on Embed"
open c b (Embed x) = case mode c of
Pat -> Embed (open (term c) b x)
Term -> error "open on Embed"
findpatrec _ _ = mempty
nthpatrec _ = mempty
instance IsEmbed (Embed t) where
type Embedded (Embed t) = t
embed = Embed
unembed (Embed t) = t
instance Alpha a => Alpha (Shift a) where
isPat (Shift a) = if (isEmbed a) then Just [] else Nothing
isTerm _ = False
isEmbed (Shift a) = isEmbed a
close c b (Shift x) = Shift (close (decr c) b x)
open c b (Shift x) = Shift (open (decr c) b x)
instance IsEmbed e => IsEmbed (Shift e) where
type Embedded (Shift e) = Embedded e
embed = Shift . embed
unembed (Shift e) = unembed e
instance Alpha Bool
instance Alpha Float
instance Alpha ()
instance Alpha a => Alpha [a]
instance Alpha Int
instance Alpha Integer
instance Alpha Double
instance Alpha Char
instance Alpha a => Alpha (Maybe a)
instance (Alpha a,Alpha b) => Alpha (Either a b)
instance (Alpha a,Alpha b) => Alpha (a,b)
instance (Alpha a,Alpha b,Alpha c) => Alpha (a,b,c)
instance (Alpha a, Alpha b,Alpha c, Alpha d) => Alpha (a,b,c,d)
instance (Alpha a, Alpha b,Alpha c, Alpha d, Alpha e) =>
Alpha (a,b,c,d,e)
instance (Rep a) => Alpha (R a)