----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.State.Lazy -- Copyright : (c) Andy Gill 2001, -- (c) Oregon Graduate Institute of Science and Technology, 2001 -- License : BSD-style (see the file libraries/base/LICENSE) -- -- Maintainer : libraries@haskell.org -- Stability : experimental -- Portability : portable -- -- Lazy state monads, passing an updateable state through a computation. -- -- Some computations may not require the full power if state transformers: -- -- * For a read-only state, see "Control.Monad.Trans.Reader". -- -- * To accumulate a value without using it on the way, see -- "Control.Monad.Trans.Writer". -- -- See below for examples. ----------------------------------------------------------------------------- module Control.Monad.Trans.State.Lazy ( -- * The State monad State, state, runState, evalState, execState, mapState, withState, -- * The StateT monad transformer StateT(..), evalStateT, execStateT, mapStateT, withStateT, -- * State operations get, put, modify, gets, -- * Lifting other operations liftCallCC, liftCallCC', liftCatch, liftListen, liftPass, -- * Examples -- $examples ) where import Control.Monad.IO.Class import Control.Monad.Trans.Class import Data.Functor.Identity import Control.Applicative import Control.Monad import Control.Monad.Fix -- --------------------------------------------------------------------------- -- | A parameterizable state monad where @s@ is the type of the state -- to carry. type State s = StateT s Identity -- | Construct a state monad computation from a function. -- (The inverse of 'runState'.) state :: (s -> (a, s)) -- ^pure state transformer -> State s a -- ^equivalent state-passing computation state f = StateT (Identity . f) -- | Unwrap a state monad computation as a function. -- (The inverse of 'state'.) runState :: State s a -- ^state-passing computation to execute -> s -- ^initial state -> (a, s) -- ^return value and final state runState m = runIdentity . runStateT m -- | Evaluate a state computation with the given initial state -- and return the final value, discarding the final state. -- -- @'evalState' m s = 'fst' ('runState' m s)@ evalState :: State s a -- ^state-passing computation to execute -> s -- ^initial value -> a -- ^return value of the state computation evalState m s = fst (runState m s) -- | Evaluate a state computation with the given initial state -- and return the final state, discarding the final value. -- -- @'execState' m s = 'snd' ('runState' m s)@ execState :: State s a -- ^state-passing computation to execute -> s -- ^initial value -> s -- ^final state execState m s = snd (runState m s) -- |Map a stateful computation from one (return value, state) pair to -- another. For instance, to convert numberTree from a function that -- returns a tree to a function that returns the sum of the numbered -- tree (see the Examples section for numberTree and sumTree) you may -- write: -- -- > sumNumberedTree :: (Eq a) => Tree a -> State (Table a) Int -- > sumNumberedTree = mapState (\ (t, tab) -> (sumTree t, tab)) . numberTree mapState :: ((a, s) -> (b, s)) -> State s a -> State s b mapState f = mapStateT (Identity . f . runIdentity) -- |Apply this function to this state and return the resulting state. withState :: (s -> s) -> State s a -> State s a withState = withStateT -- --------------------------------------------------------------------------- -- | A parameterizable state monad for encapsulating an inner -- monad. -- -- The StateT Monad structure is parameterized over two things: -- -- * s - The state. -- -- * m - The inner monad. -- -- Here are some examples of use: -- -- (Parser from ParseLib with Hugs) -- -- > type Parser a = StateT String [] a -- > ==> StateT (String -> [(a,String)]) -- -- For example, item can be written as: -- -- > item = do (x:xs) <- get -- > put xs -- > return x -- > -- > type BoringState s a = StateT s Identity a -- > ==> StateT (s -> Identity (a,s)) -- > -- > type StateWithIO s a = StateT s IO a -- > ==> StateT (s -> IO (a,s)) -- > -- > type StateWithErr s a = StateT s Maybe a -- > ==> StateT (s -> Maybe (a,s)) newtype StateT s m a = StateT { runStateT :: s -> m (a,s) } -- | Evaluate a state computation with the given initial state -- and return the final value, discarding the final state. -- -- @'evalStateT' m s = 'liftM' 'fst' ('runStateT' m s)@ evalStateT :: (Monad m) => StateT s m a -> s -> m a evalStateT m s = do ~(a, _) <- runStateT m s return a -- | Evaluate a state computation with the given initial state -- and return the final state, discarding the final value. -- -- @'execStateT' m s = 'liftM' 'snd' ('runStateT' m s)@ execStateT :: (Monad m) => StateT s m a -> s -> m s execStateT m s = do ~(_, s') <- runStateT m s return s' -- | Map a stateful computation from one (return value, state) pair to -- another. For instance, to convert numberTree from a function that -- returns a tree to a function that returns the sum of the numbered -- tree (see the Examples section for numberTree and sumTree) you may -- write: -- -- > sumNumberedTree :: (Eq a) => Tree a -> State (Table a) Int -- > sumNumberedTree = mapState (\ (t, tab) -> (sumTree t, tab)) . numberTree mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b mapStateT f m = StateT $ f . runStateT m -- | Apply this function to this state and return the resulting state. withStateT :: (s -> s) -> StateT s m a -> StateT s m a withStateT f m = StateT $ runStateT m . f instance (Functor m) => Functor (StateT s m) where fmap f m = StateT $ \ s -> fmap (\ ~(a, s') -> (f a, s')) $ runStateT m s instance (Functor m, Monad m) => Applicative (StateT s m) where pure = return (<*>) = ap instance (Functor m, MonadPlus m) => Alternative (StateT s m) where empty = mzero (<|>) = mplus instance (Monad m) => Monad (StateT s m) where return a = StateT $ \s -> return (a, s) m >>= k = StateT $ \s -> do ~(a, s') <- runStateT m s runStateT (k a) s' fail str = StateT $ \_ -> fail str instance (MonadPlus m) => MonadPlus (StateT s m) where mzero = StateT $ \_ -> mzero m `mplus` n = StateT $ \s -> runStateT m s `mplus` runStateT n s instance (MonadFix m) => MonadFix (StateT s m) where mfix f = StateT $ \s -> mfix $ \ ~(a, _) -> runStateT (f a) s instance MonadTrans (StateT s) where lift m = StateT $ \s -> do a <- m return (a, s) instance (MonadIO m) => MonadIO (StateT s m) where liftIO = lift . liftIO -- | Fetch the current value of the state within the monad. get :: (Monad m) => StateT s m s get = StateT $ \s -> return (s, s) -- | @'put' s@ sets the state within the monad to @s@. put :: (Monad m) => s -> StateT s m () put s = StateT $ \_ -> return ((), s) -- | Monadic state transformer. -- -- Maps an old state to a new state inside a state monad. -- The old state is thrown away. modify :: (Monad m) => (s -> s) -> StateT s m () modify f = do s <- get put (f s) -- | Get a specific component of the state, using a projection function -- supplied. gets :: (Monad m) => (s -> a) -> StateT s m a gets f = do s <- get return (f s) -- | Uniform lifting of a @callCC@ operation to the new monad. -- This version rolls back to the original state on entering the -- continuation. liftCallCC :: ((((a,s) -> m (b,s)) -> m (a,s)) -> m (a,s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m a liftCallCC callCC f = StateT $ \s -> callCC $ \c -> runStateT (f (\a -> StateT $ \ _ -> c (a, s))) s -- | In-situ lifting of a @callCC@ operation to the new monad. -- This version uses the current state on entering the continuation. -- It does not satisfy the laws of a monad transformer. liftCallCC' :: ((((a,s) -> m (b,s)) -> m (a,s)) -> m (a,s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m a liftCallCC' callCC f = StateT $ \s -> callCC $ \c -> runStateT (f (\a -> StateT $ \s' -> c (a, s'))) s -- | Lift a @catchError@ operation to the new monad. liftCatch :: (m (a,s) -> (e -> m (a,s)) -> m (a,s)) -> StateT s m a -> (e -> StateT s m a) -> StateT s m a liftCatch catchError m h = StateT $ \s -> runStateT m s `catchError` \e -> runStateT (h e) s -- | Lift a @listen@ operation to the new monad. liftListen :: Monad m => (m (a,s) -> m ((a,s),w)) -> StateT s m a -> StateT s m (a,w) liftListen listen m = StateT $ \s -> do ~((a, s'), w) <- listen (runStateT m s) return ((a, w), s') -- | Lift a @pass@ operation to the new monad. liftPass :: Monad m => (m ((a,s),b) -> m (a,s)) -> StateT s m (a,b) -> StateT s m a liftPass pass m = StateT $ \s -> pass $ do ~((a, f), s') <- runStateT m s return ((a, s'), f) {- $examples A function to increment a counter. Taken from the paper /Generalising Monads to Arrows/, John Hughes (), November 1998: > tick :: State Int Int > tick = do n <- get > put (n+1) > return n Add one to the given number using the state monad: > plusOne :: Int -> Int > plusOne n = execState tick n A contrived addition example. Works only with positive numbers: > plus :: Int -> Int -> Int > plus n x = execState (sequence $ replicate n tick) x An example from /The Craft of Functional Programming/, Simon Thompson (), Addison-Wesley 1999: \"Given an arbitrary tree, transform it to a tree of integers in which the original elements are replaced by natural numbers, starting from 0. The same element has to be replaced by the same number at every occurrence, and when we meet an as-yet-unvisited element we have to find a \'new\' number to match it with:\" > data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq) > type Table a = [a] > numberTree :: Eq a => Tree a -> State (Table a) (Tree Int) > numberTree Nil = return Nil > numberTree (Node x t1 t2) > = do num <- numberNode x > nt1 <- numberTree t1 > nt2 <- numberTree t2 > return (Node num nt1 nt2) > where > numberNode :: Eq a => a -> State (Table a) Int > numberNode x > = do table <- get > (newTable, newPos) <- return (nNode x table) > put newTable > return newPos > nNode:: (Eq a) => a -> Table a -> (Table a, Int) > nNode x table > = case (findIndexInList (== x) table) of > Nothing -> (table ++ [x], length table) > Just i -> (table, i) > findIndexInList :: (a -> Bool) -> [a] -> Maybe Int > findIndexInList = findIndexInListHelp 0 > findIndexInListHelp _ _ [] = Nothing > findIndexInListHelp count f (h:t) > = if (f h) > then Just count > else findIndexInListHelp (count+1) f t numTree applies numberTree with an initial state: > numTree :: (Eq a) => Tree a -> Tree Int > numTree t = evalState (numberTree t) [] > testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil > numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil sumTree is a little helper function that does not use the State monad: > sumTree :: (Num a) => Tree a -> a > sumTree Nil = 0 > sumTree (Node e t1 t2) = e + (sumTree t1) + (sumTree t2) -}