module ToySolver.Converter.MIP2SMT
( convert
, Options (..)
, defaultOptions
, Language (..)
, YicesVersion (..)
) where
import Data.Char
import Data.Default.Class
import Data.Ord
import Data.List
import Data.Ratio
import qualified Data.Set as Set
import Data.Map (Map)
import qualified Data.Map as Map
import System.IO
import Text.Printf
import qualified ToySolver.Data.MIP as MIP
import qualified ToySolver.Text.LPFile as LPFile
import ToySolver.Internal.Util (showRationalAsFiniteDecimal, isInteger)
data Options
= Options
{ optLanguage :: Language
, optSetLogic :: Maybe String
, optCheckSAT :: Bool
, optProduceModel :: Bool
, optOptimize :: Bool
}
deriving (Show, Eq, Ord)
instance Default Options where
def = defaultOptions
defaultOptions :: Options
defaultOptions
= Options
{ optLanguage = SMTLIB2
, optSetLogic = Nothing
, optCheckSAT = True
, optProduceModel = True
, optOptimize = False
}
data Language
= SMTLIB2
| YICES YicesVersion
deriving (Show, Eq, Ord)
data YicesVersion
= Yices1
| Yices2
deriving (Show, Eq, Ord, Enum, Bounded)
type Var = String
type Env = Map MIP.Var Var
concatS :: [ShowS] -> ShowS
concatS = foldr (.) id
unlinesS :: [ShowS] -> ShowS
unlinesS = concatS . map (. showChar '\n')
list :: [ShowS] -> ShowS
list xs = showParen True $ concatS (intersperse (showChar ' ') xs)
and' :: [ShowS] -> ShowS
and' [] = showString "true"
and' [x] = x
and' xs = list (showString "and" : xs)
or' :: [ShowS] -> ShowS
or' [] = showString "false"
or' [x] = x
or' xs = list (showString "or" : xs)
not' :: ShowS -> ShowS
not' x = list [showString "not", x]
intExpr :: Options -> Env -> MIP.Problem -> MIP.Expr -> ShowS
intExpr opt env mip e =
case e of
[] -> intNum opt 0
[t] -> f t
_ -> list (showChar '+' : map f e)
where
f (MIP.Term c _) | not (isInteger c) =
error ("ToySolver.Converter.MIP2SMT.intExpr: fractional coefficient: " ++ show c)
f (MIP.Term c []) = intNum opt (floor c)
f (MIP.Term (1) vs) = list [showChar '-', f (MIP.Term 1 vs)]
f (MIP.Term c vs) =
case xs of
[] -> intNum opt 1
[x] -> x
_ -> list (showChar '*' : xs)
where
xs = [intNum opt (floor c) | c /= 1] ++
[showString (env Map.! v) | v <- vs]
realExpr :: Options -> Env -> MIP.Problem -> MIP.Expr -> ShowS
realExpr opt env mip e =
case e of
[] -> realNum opt 0
[t] -> f t
_ -> list (showChar '+' : map f e)
where
f (MIP.Term c []) = realNum opt c
f (MIP.Term (1) vs) = list [showChar '-', f (MIP.Term 1 vs)]
f (MIP.Term c vs) =
case xs of
[] -> realNum opt 1
[x] -> x
_ -> list (showChar '*' : xs)
where
xs = [realNum opt c | c /= 1] ++
[ v3
| v <- vs
, let v2 = env Map.! v
, let v3 = if isInt mip v
then toReal opt (showString v2)
else showString v2
]
intNum :: Options -> Integer -> ShowS
intNum opt x =
case optLanguage opt of
SMTLIB2
| x < 0 -> list [showChar '-', shows (negate x)]
| otherwise -> shows x
YICES _ -> shows x
realNum :: Options -> Rational -> ShowS
realNum opt r =
case optLanguage opt of
SMTLIB2
| r < 0 -> list [showChar '-', f (negate r)]
| otherwise -> f r
YICES Yices1 ->
if denominator r == 1
then shows (numerator r)
else shows (numerator r) . showChar '/' . shows (denominator r)
YICES Yices2 ->
case showRationalAsFiniteDecimal r of
Just s -> showString s
Nothing -> shows (numerator r) . showChar '/' . shows (denominator r)
where
f r = case showRationalAsFiniteDecimal r of
Just s -> showString s
Nothing -> list [showChar '/', shows (numerator r) . showString ".0", shows (denominator r) . showString ".0"]
rel :: Options -> Env -> MIP.Problem -> Bool -> MIP.RelOp -> MIP.Expr -> Rational -> ShowS
rel opt env mip q op lhs rhs
| and [isInt mip v | v <- Set.toList (MIP.vars lhs)] &&
and [isInteger c | MIP.Term c _ <- lhs] && isInteger rhs =
f q op (intExpr opt env mip lhs) (intNum opt (floor rhs))
| otherwise =
f q op (realExpr opt env mip lhs) (realNum opt rhs)
where
f :: Bool -> MIP.RelOp -> ShowS -> ShowS -> ShowS
f True MIP.Eql x y = and' [f False MIP.Le x y, f False MIP.Ge x y]
f _ MIP.Eql x y = list [showString "=", x, y]
f _ MIP.Le x y = list [showString "<=", x, y]
f _ MIP.Ge x y = list [showString ">=", x, y]
toReal :: Options -> ShowS -> ShowS
toReal opt x =
case optLanguage opt of
SMTLIB2 -> list [showString "to_real", x]
YICES _ -> x
assert :: Options -> (ShowS, Maybe String) -> ShowS
assert opt (x, label) = list [showString "assert", x']
where
x' = case label of
Just name | optLanguage opt == SMTLIB2 ->
list [ showString "!"
, x
, showString ":named"
, showString (encode opt name)
]
_ -> x
constraint :: Options -> Bool -> Env -> MIP.Problem -> MIP.Constraint -> (ShowS, Maybe String)
constraint opt q env mip
MIP.Constraint
{ MIP.constrLabel = label
, MIP.constrIndicator = g
, MIP.constrBody = (e, op, b)
} = (c1, label)
where
c0 = rel opt env mip q op e b
c1 = case g of
Nothing -> c0
Just (var,val) ->
list [ showString "=>"
, rel opt env mip q MIP.Eql [MIP.Term 1 [var]] val
, c0
]
conditions :: Options -> Bool -> Env -> MIP.Problem -> [(ShowS, Maybe String)]
conditions opt q env mip = bnds ++ cs ++ ss
where
vs = MIP.variables mip
bnds = map bnd (Set.toList vs)
bnd v = (c1, Nothing)
where
v2 = env Map.! v
(lb,ub) = MIP.getBounds mip v
c0 =
case optLanguage opt of
SMTLIB2
| lb == MIP.PosInf || ub == MIP.NegInf -> showString "false"
| length args >= 2 -> list (showString "<=" : args)
| otherwise -> showString "true"
where
args = lb2 ++ [showString v2] ++ ub2
lb2 = case lb of
MIP.NegInf -> []
MIP.PosInf -> error "should not happen"
MIP.Finite x
| isInt mip v -> [intNum opt (ceiling x)]
| otherwise -> [realNum opt x]
ub2 = case ub of
MIP.NegInf -> error "should not happen"
MIP.PosInf -> []
MIP.Finite x
| isInt mip v -> [intNum opt (floor x)]
| otherwise -> [realNum opt x]
YICES _ -> and' (s1 ++ s2)
where
s1 = case lb of
MIP.NegInf -> []
MIP.PosInf -> [showString "false"]
MIP.Finite x ->
if isInt mip v
then [list [showString "<=", intNum opt (ceiling x), showString v2]]
else [list [showString "<=", realNum opt x, showString v2]]
s2 = case ub of
MIP.NegInf -> [showString "false"]
MIP.PosInf -> []
MIP.Finite x ->
if isInt mip v
then [list [showString "<=", showString v2, intNum opt (floor x)]]
else [list [showString "<=", showString v2, realNum opt x]]
c1 = case MIP.getVarType mip v of
MIP.SemiContinuousVariable ->
or' [list [showString "=", showString v2, realNum opt 0], c0]
MIP.SemiIntegerVariable ->
or' [list [showString "=", showString v2, intNum opt 0], c0]
_ ->
c0
cs = map (constraint opt q env mip) (MIP.constraints mip)
ss = concatMap sos (MIP.sosConstraints mip)
sos (MIP.SOSConstraint label typ xs) = do
(x1,x2) <- case typ of
MIP.S1 -> pairs $ map fst xs
MIP.S2 -> nonAdjacentPairs $ map fst $ sortBy (comparing snd) $ xs
let c = not' $ and'
[ list [showString "/=", v3, realNum opt 0]
| v<-[x1,x2]
, let v2 = env Map.! v
, let v3 = if isInt mip v
then toReal opt (showString v2)
else showString v2
]
return (c, label)
pairs :: [a] -> [(a,a)]
pairs [] = []
pairs (x:xs) = [(x,x2) | x2 <- xs] ++ pairs xs
nonAdjacentPairs :: [a] -> [(a,a)]
nonAdjacentPairs (x1:x2:xs) = [(x1,x3) | x3 <- xs] ++ nonAdjacentPairs (x2:xs)
nonAdjacentPairs _ = []
convert :: Options -> MIP.Problem -> ShowS
convert opt mip =
unlinesS $ options ++ set_logic ++ defs ++ map (assert opt) (conditions opt False env mip)
++ [ assert opt (optimality, Nothing) | optOptimize opt ]
++ [ case optLanguage opt of
SMTLIB2 -> list [showString "check-sat"]
YICES _ -> list [showString "check"]
| optCheckSAT opt ]
where
vs = MIP.variables mip
real_vs = vs `Set.difference` int_vs
int_vs = MIP.integerVariables mip `Set.union` MIP.semiIntegerVariables mip
realType =
case optLanguage opt of
SMTLIB2 -> "Real"
YICES _ -> "real"
intType =
case optLanguage opt of
SMTLIB2 -> "Int"
YICES _ -> "int"
ts = [(v, realType) | v <- Set.toList real_vs] ++ [(v, intType) | v <- Set.toList int_vs]
obj = snd (MIP.objectiveFunction mip)
env = Map.fromList [(v, encode opt (MIP.fromVar v)) | v <- Set.toList vs]
env2 = Map.fromList [(v, encode opt (MIP.fromVar v ++ "-2")) | v <- Set.toList vs]
options =
[ case optLanguage opt of
SMTLIB2 -> list [showString "set-option", showString ":produce-models", showString "true"]
YICES _ -> list [showString "set-evidence!", showString "true"]
| optProduceModel opt && optLanguage opt /= YICES Yices2
]
set_logic =
case optSetLogic opt of
Just logic | optLanguage opt == SMTLIB2 -> [list [showString "set-logic", showString logic]]
_ -> []
defs = do
(v,t) <- ts
let v2 = env Map.! v
return $ showString $
case optLanguage opt of
SMTLIB2 -> printf "(declare-fun %s () %s)" v2 t
YICES _ -> printf "(define %s::%s) ; %s" v2 t (MIP.fromVar v)
optimality = list [showString "forall", decl, body]
where
decl =
case optLanguage opt of
SMTLIB2 -> list [list [showString (env2 Map.! v), showString t] | (v,t) <- ts]
YICES _ -> list [showString $ printf "%s::%s" (env2 Map.! v) t | (v,t) <- ts]
body = list [showString "=>"
, and' (map fst (conditions opt True env2 mip))
, list [ showString $ if MIP.dir mip == MIP.OptMin then "<=" else ">="
, realExpr opt env mip obj, realExpr opt env2 mip obj
]
]
encode :: Options -> String -> String
encode opt s =
case optLanguage opt of
SMTLIB2
| all p s -> s
| any q s -> error $ "cannot encode " ++ show s
| otherwise -> "|" ++ s ++ "|"
YICES _ -> concatMap f s
where
p c = isAscii c && (isAlpha c || isDigit c || c `elem` "~!@$%^&*_-+=<>.?/")
q c = c == '|' && c == '\\'
f '(' = "["
f ')' = "]"
f c | c `elem` "/\";" = printf "\\x%02d" (fromEnum c :: Int)
f c = [c]
isInt :: MIP.Problem -> MIP.Var -> Bool
isInt mip v = vt == MIP.IntegerVariable || vt == MIP.SemiIntegerVariable
where
vt = MIP.getVarType mip v
testFile :: FilePath -> IO ()
testFile fname = do
result <- LPFile.parseFile fname
case result of
Right mip -> putStrLn $ convert def mip ""
Left err -> hPrint stderr err
test :: IO ()
test = putStrLn $ convert def testdata ""
testdata :: MIP.Problem
Right testdata = LPFile.parseString "test" $ unlines
[ "Maximize"
, " obj: x1 + 2 x2 + 3 x3 + x4"
, "Subject To"
, " c1: - x1 + x2 + x3 + 10 x4 <= 20"
, " c2: x1 - 3 x2 + x3 <= 30"
, " c3: x2 - 3.5 x4 = 0"
, "Bounds"
, " 0 <= x1 <= 40"
, " 2 <= x4 <= 3"
, "General"
, " x4"
, "End"
]