module ToySolver.MIPSolverHL
( module Data.OptDir
, OptResult (..)
, minimize
, maximize
, optimize
) where
import Control.Exception
import Control.Monad.State
import Data.Ord
import Data.Maybe
import Data.List (maximumBy)
import qualified Data.IntMap as IM
import qualified Data.IntSet as IS
import Data.OptDir
import Data.VectorSpace
import ToySolver.Data.ArithRel
import ToySolver.Data.Var
import qualified ToySolver.Data.LA as LA
import qualified ToySolver.Simplex as Simplex
import qualified ToySolver.LPSolver as LPSolver
import ToySolver.LPSolver hiding (OptResult (..))
import ToySolver.LPSolverHL (OptResult (..))
import qualified ToySolver.OmegaTest as OmegaTest
import ToySolver.Internal.Util (isInteger, fracPart)
data Node r
= Node
{ ndSolver :: LPSolver.Solver r
, ndDepth :: !Int
}
ndTableau :: Node r -> Simplex.Tableau r
ndTableau node = evalState getTableau (ndSolver node)
ndLowerBound :: (Num r, Eq r) => Node r -> r
ndLowerBound node = evalState (liftM Simplex.currentObjValue getTableau) (ndSolver node)
data Err = ErrUnbounded | ErrUnsat deriving (Ord, Eq, Show, Enum, Bounded)
maximize :: RealFrac r => LA.Expr r -> [LA.Atom r] -> VarSet -> OptResult r
maximize = optimize OptMax
minimize :: RealFrac r => LA.Expr r -> [LA.Atom r] -> VarSet -> OptResult r
minimize = optimize OptMin
optimize :: RealFrac r => OptDir -> LA.Expr r -> [LA.Atom r] -> VarSet -> OptResult r
optimize optdir obj cs ivs =
case mkInitialNode optdir obj cs ivs of
Left err ->
case err of
ErrUnsat -> OptUnsat
ErrUnbounded ->
if IS.null ivs
then Unbounded
else
case OmegaTest.solveQFLA OmegaTest.defaultOptions (vars cs `IS.union` ivs) (map conv cs) ivs of
Nothing -> OptUnsat
Just _ -> Unbounded
Right (node0, ivs2) ->
case traverse optdir obj ivs2 node0 of
Left ErrUnbounded -> error "shoud not happen"
Left ErrUnsat -> OptUnsat
Right node -> flip evalState (ndSolver node) $ do
tbl <- getTableau
model <- getModel vs
return $ Optimum (Simplex.currentObjValue tbl) model
where
vs = vars cs `IS.union` vars obj
tableau' :: (RealFrac r) => [LA.Atom r] -> VarSet -> LP r VarSet
tableau' cs ivs = do
let (nonnegVars, cs') = collectNonnegVars cs ivs
fvs = vars cs `IS.difference` nonnegVars
ivs2 <- liftM IS.unions $ forM (IS.toList fvs) $ \v -> do
v1 <- newVar
v2 <- newVar
define v (LA.var v1 ^-^ LA.var v2)
return $ if v `IS.member` ivs then IS.fromList [v1,v2] else IS.empty
mapM_ addConstraint cs'
return ivs2
conv :: RealFrac r => LA.Atom r -> LA.Atom Rational
conv (Rel a op b) = Rel (f a) op (f b)
where
f = LA.mapCoeff toRational
mkInitialNode :: RealFrac r => OptDir -> LA.Expr r -> [LA.Atom r] -> VarSet -> Either Err (Node r, VarSet)
mkInitialNode optdir obj cs ivs =
flip evalState (emptySolver vs) $ do
ivs2 <- tableau' cs ivs
ret <- LPSolver.twoPhaseSimplex optdir obj
case ret of
LPSolver.Unsat -> return (Left ErrUnsat)
LPSolver.Unbounded -> return (Left ErrUnbounded)
LPSolver.Optimum -> do
solver <- get
return $ Right $
( Node{ ndSolver = solver
, ndDepth = 0
}
, ivs `IS.union` ivs2
)
where
vs = vars cs `IS.union` vars obj
isStrictlyBetter :: RealFrac r => OptDir -> r -> r -> Bool
isStrictlyBetter optdir = if optdir==OptMin then (<) else (>)
traverse :: forall r. RealFrac r => OptDir -> LA.Expr r -> VarSet -> Node r -> Either Err (Node r)
traverse optdir obj ivs node0 = loop [node0] Nothing
where
loop :: [Node r] -> Maybe (Node r) -> Either Err (Node r)
loop [] (Just best) = Right best
loop [] Nothing = Left ErrUnsat
loop (n:ns) Nothing =
case children n of
Nothing -> loop ns (Just n)
Just cs -> loop (cs++ns) Nothing
loop (n:ns) (Just best)
| isStrictlyBetter optdir (ndLowerBound n) (ndLowerBound best) =
case children n of
Nothing -> loop ns (Just n)
Just cs -> loop (cs++ns) (Just best)
| otherwise = loop ns (Just best)
reopt :: Solver r -> Maybe (Solver r)
reopt s = flip evalState s $ do
ret <- dualSimplex optdir obj
if ret
then liftM Just get
else return Nothing
children :: Node r -> Maybe [Node r]
children node
| null xs = Nothing
| ndDepth node `mod` 100 == 0 =
let
(f0, m0) = maximumBy (comparing fst) [(fracPart val, m) | (_,m,val) <- xs]
sv = flip execState (ndSolver node) $ do
s <- newVar
let g j x = assert (a >= 0) a
where
a | j `IS.member` ivs =
if fracPart x <= f0
then fracPart x
else (f0 / (f0 1)) * (fracPart x 1)
| otherwise =
if x >= 0
then x
else (f0 / (f0 1)) * x
putTableau $ IM.insert s (IM.mapWithKey (\j x -> negate (g j x)) m0, negate f0) tbl
in Just $ [node{ ndSolver = sv2, ndDepth = ndDepth node + 1 } | sv2 <- maybeToList (reopt sv)]
| otherwise =
let (v0, val0) = snd $ maximumBy (comparing fst) [(fracPart val, (v, val)) | (v,_,val) <- xs]
cs = [ LA.var v0 .>=. LA.constant (fromIntegral (ceiling val0 :: Integer))
, LA.var v0 .<=. LA.constant (fromIntegral (floor val0 :: Integer))
]
svs = [execState (addConstraint c) (ndSolver node) | c <- cs]
in Just $ [node{ ndSolver = sv, ndDepth = ndDepth node + 1 } | Just sv <- map reopt svs]
where
tbl :: Simplex.Tableau r
tbl = ndTableau node
xs :: [(Var, VarMap r, r)]
xs = [ (v, m, val)
| v <- IS.toList ivs
, Just (m, val) <- return (IM.lookup v tbl)
, not (isInteger val)
]
example1 :: (Fractional r, Eq r) => (OptDir, LA.Expr r, [LA.Atom r], VarSet)
example1 = (optdir, obj, cs, ivs)
where
optdir = OptMax
x1 = LA.var 1
x2 = LA.var 2
x3 = LA.var 3
x4 = LA.var 4
obj = x1 ^+^ 2 *^ x2 ^+^ 3 *^ x3 ^+^ x4
cs =
[ (1) *^ x1 ^+^ x2 ^+^ x3 ^+^ 10*^x4 .<=. LA.constant 20
, x1 ^-^ 3 *^ x2 ^+^ x3 .<=. LA.constant 30
, x2 ^-^ 3.5 *^ x4 .==. LA.constant 0
, LA.constant 0 .<=. x1
, x1 .<=. LA.constant 40
, LA.constant 0 .<=. x2
, LA.constant 0 .<=. x3
, LA.constant 2 .<=. x4
, x4 .<=. LA.constant 3
]
ivs = IS.singleton 4
test1 :: Bool
test1 = result==expected
where
(optdir, obj, cs, ivs) = example1
result, expected :: OptResult Rational
result = optimize optdir obj cs ivs
expected = Optimum (245/2) (IM.fromList [(1,40),(2,21/2),(3,39/2),(4,3)])
test1' :: Bool
test1' = result==expected
where
(optdir, obj, cs, ivs) = example1
f OptMin = OptMax
f OptMax = OptMin
result, expected :: OptResult Rational
result = optimize (f optdir) (negateV obj) cs ivs
expected = Optimum (245/2) (IM.fromList [(1,40),(2,21/2),(3,39/2),(4,3)])
example2 :: (Fractional r, Eq r) => (OptDir, LA.Expr r, [LA.Atom r], VarSet)
example2 = (optdir, obj, cs, ivs)
where
optdir = OptMin
[x1,x2,x3] = map LA.var [1..3]
obj = (1) *^ x1 ^-^ 3 *^ x2 ^-^ 5 *^ x3
cs =
[ 3 *^ x1 ^+^ 4 *^ x2 .<=. LA.constant 10
, 2 *^ x1 ^+^ x2 ^+^ x3 .<=. LA.constant 7
, 3*^x1 ^+^ x2 ^+^ 4 *^ x3 .==. LA.constant 12
, LA.constant 0 .<=. x1
, LA.constant 0 .<=. x2
, LA.constant 0 .<=. x3
]
ivs = IS.fromList [1,2]
test2 :: Bool
test2 = result == expected
where
result, expected :: OptResult Rational
result = optimize optdir obj cs ivs
expected = Optimum (37/2) (IM.fromList [(1,0),(2,2),(3,5/2)])
(optdir, obj, cs, ivs) = example2