module Type.Data.Num
( Negate
, negate
, IsPositive
, isPositive
, IsZero
, isZero
, IsNegative
, isNegative
, IsNatural
, isNatural
, One
, one
, Succ
, succ
, Pred
, pred
, IsEven
, isEven
, IsOdd
, isOdd
, (:+:)
, add
, (:-:)
, sub
, (:*:)
, mul
, Mul2
, mul2
, Pow2
, pow2
, Log2Ceil
, log2Ceil
, DivMod
, divMod
, Div
, div
, Mod
, mod
, Div2
, div2
, Fac
, fac
, Singleton(..)
, Representation (..)
, Integer (..)
, Natural
, Positive
, Negative
, fromInteger
, reifyPositive
, reifyNegative
, reifyNatural
) where
import Type.Data.Bool (False, True, Not)
import Type.Base.Proxy (Proxy(Proxy))
import Data.Maybe.HT (toMaybe)
import qualified Prelude as P
import Prelude (Num, Maybe, (.), (<), (>), (>=))
type family Negate x
negate :: Proxy x -> Proxy (Negate x)
negate Proxy = Proxy
type family IsPositive x
isPositive :: Proxy x -> Proxy (IsPositive x)
isPositive Proxy = Proxy
type family IsZero x
isZero :: Proxy x -> Proxy (IsZero x)
isZero Proxy = Proxy
type family IsNegative x
isNegative :: Proxy x -> Proxy (IsNegative x)
isNegative Proxy = Proxy
type family IsNatural x
isNatural :: Proxy x -> Proxy (IsNatural x)
isNatural Proxy = Proxy
type family One repr
one :: Proxy repr -> Proxy (One repr)
one Proxy = Proxy
type family Succ x
succ :: Proxy x -> Proxy (Succ x)
succ Proxy = Proxy
type family Pred x
pred :: Proxy x -> Proxy (Pred x)
pred Proxy = Proxy
type family IsEven x
isEven :: Proxy x -> Proxy (IsEven x)
isEven Proxy = Proxy
type family IsOdd x
type instance IsOdd x = Not (IsEven x)
isOdd :: Proxy x -> Proxy (IsOdd x)
isOdd Proxy = Proxy
type family x :+: y
add :: Proxy x -> Proxy y -> Proxy (x :+: y)
add Proxy Proxy = Proxy
type family x :-: y
sub :: Proxy x -> Proxy y -> Proxy (x :-: y)
sub Proxy Proxy = Proxy
type family x :*: y
mul :: Proxy x -> Proxy y -> Proxy (x :*: y)
mul Proxy Proxy = Proxy
type family Mul2 x
mul2 :: Proxy x -> Proxy (Mul2 x)
mul2 Proxy = Proxy
type family DivMod x y
divMod :: Proxy x -> Proxy y -> Proxy (DivMod x y)
divMod Proxy Proxy = Proxy
type family Div x y
div :: Proxy x -> Proxy y -> Proxy (Div x y)
div Proxy Proxy = Proxy
type family Mod x y
mod :: Proxy x -> Proxy y -> Proxy (Mod x y)
mod Proxy Proxy = Proxy
type family Div2 x
div2 :: Proxy x -> Proxy (Div2 x)
div2 Proxy = Proxy
type family Fac x
fac :: Proxy x -> Proxy (Fac x)
fac Proxy = Proxy
type instance Fac x = FacRec x (IsZero x)
type family FacRec x is0
type instance FacRec x True = One (Repr x)
type instance FacRec x False = Fac (Pred x) :*: x
type family Pow2 x
pow2 :: Proxy x -> Proxy (Pow2 x)
pow2 Proxy = Proxy
type family Log2Ceil x
log2Ceil :: Proxy x -> Proxy (Log2Ceil x)
log2Ceil Proxy = Proxy
class Integer x => Natural x
instance (Integer x, IsNatural x ~ True) => Natural x
class Integer x => Positive x
instance (Integer x, IsPositive x ~ True) => Positive x
class Integer x => Negative x
instance (Integer x, IsNegative x ~ True) => Negative x
class (Representation (Repr x)) => Integer x where
singleton :: Singleton x
type Repr x
class Representation r where
reifyIntegral ::
Proxy r -> P.Integer ->
(forall s. (Integer s, Repr s ~ r) => Proxy s -> a) ->
a
newtype Singleton d = Singleton P.Integer
fromInteger :: forall x y. (Integer x, Num y) => Proxy x -> y
fromInteger _ =
case singleton :: Singleton x of
Singleton n -> P.fromInteger n
data AssertPos x
data AssertNeg x
data AssertNat x
assertPos :: Proxy x -> Proxy (AssertPos x)
assertPos Proxy = Proxy
assertNeg :: Proxy x -> Proxy (AssertNeg x)
assertNeg Proxy = Proxy
assertNat :: Proxy x -> Proxy (AssertNat x)
assertNat Proxy = Proxy
type instance IsPositive (AssertPos x) = True
type instance IsPositive (AssertNeg x) = False
type instance IsNegative (AssertPos x) = False
type instance IsNegative (AssertNeg x) = True
type instance IsNegative (AssertNat x) = False
type instance IsNatural (AssertPos x) = True
type instance IsNatural (AssertNeg x) = False
type instance IsNatural (AssertNat x) = True
instance Integer x => Integer (AssertPos x) where
singleton = case singleton :: Singleton x of Singleton n -> Singleton n
type Repr (AssertPos x) = Repr x
instance Integer x => Integer (AssertNeg x) where
singleton = case singleton :: Singleton x of Singleton n -> Singleton n
type Repr (AssertNeg x) = Repr x
instance Integer x => Integer (AssertNat x) where
singleton = case singleton :: Singleton x of Singleton n -> Singleton n
type Repr (AssertNat x) = Repr x
reifyPositive ::
Representation r =>
Proxy r -> P.Integer ->
(forall s. (Positive s, Repr s ~ r) => Proxy s -> a) ->
Maybe a
reifyPositive r n k =
toMaybe (n > 0) (reifyIntegral r n (k . assertPos))
reifyNegative ::
Representation r =>
Proxy r -> P.Integer ->
(forall s. (Negative s, Repr s ~ r) => Proxy s -> a) ->
Maybe a
reifyNegative r n k =
toMaybe (n < 0) (reifyIntegral r n (k . assertNeg))
reifyNatural ::
Representation r =>
Proxy r -> P.Integer ->
(forall s. (Natural s, Repr s ~ r) => Proxy s -> a) ->
Maybe a
reifyNatural r n k =
toMaybe (n >= 0) (reifyIntegral r n (k . assertNat))