{-# LANGUAGE OverloadedStrings, RelaxedPolyRec #-}

-- |
-- Module      : Data.Text.Format
-- Copyright   : (c) 2011 MailRank, Inc.
--
-- License     : BSD-style
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : GHC
--
-- Fast, efficient, flexible support for formatting text strings.

module Data.Text.Format
    (
    -- * Types
      Format
    , Only(..)
    -- ** Types for format control
    , Shown(..)
    -- * Rendering
    , format
    , print
    , hprint
    , build
    -- * Format control
    , left
    , right
    -- ** Integers
    , hex
    -- ** Floating point numbers
    , expt
    , fixed
    , prec
    , shortest
    ) where

import Control.Monad.IO.Class (MonadIO(liftIO))
import Data.Text.Format.Functions ((<>))
import Data.Text.Format.Params (Params(..))
import Data.Text.Format.Types.Internal (Format(..), Only(..), Shown(..))
import Data.Text.Format.Types.Internal (Hex(..))
import Data.Text.Lazy.Builder
import Prelude hiding (exp, print)
import System.IO (Handle)
import qualified Data.Double.Conversion.Text as C
import qualified Data.Text as ST
import qualified Data.Text.Buildable as B
import qualified Data.Text.Lazy as LT
import qualified Data.Text.Lazy.IO as LT

-- Format strings are almost always constants, and they're expensive
-- to interpret (which we refer to as "cracking" here).  We'd really
-- like to have GHC memoize the cracking of a known-constant format
-- string, so that it occurs at most once.
--
-- To achieve this, we arrange to have the cracked version of a format
-- string let-floated out as a CAF, by inlining the definitions of
-- build and functions that invoke it.  This works well with GHC 7.

-- | Render a format string and arguments to a 'Builder'.
build :: Params ps => Format -> ps -> Builder
build fmt ps = zipParams (crack fmt) (buildParams ps)
{-# INLINE build #-}

zipParams :: [Builder] -> [Builder] -> Builder
zipParams fragments params = go fragments params
  where go (f:fs) (y:ys) = f <> y <> go fs ys
        go [f] []        = f
        go _ _ = error . LT.unpack $ format
                 "Data.Text.Format.build: {} sites, but {} parameters"
                 (length fragments - 1, length params)

crack :: Format -> [Builder]
crack = map fromText . ST.splitOn "{}" . fromFormat

-- | Render a format string and arguments to a 'LT.Text'.
format :: Params ps => Format -> ps -> LT.Text
format fmt ps = toLazyText $ build fmt ps
{-# INLINE format #-}

-- | Render a format string and arguments, then print the result.
print :: (MonadIO m, Params ps) => Format -> ps -> m ()
print fmt ps = liftIO . LT.putStr . toLazyText $ build fmt ps
{-# INLINE print #-}

-- | Render a format string and arguments, then print the result to
-- the given file handle.
hprint :: (MonadIO m, Params ps) => Handle -> Format -> ps -> m ()
hprint h fmt ps = liftIO . LT.hPutStr h . toLazyText $ build fmt ps
{-# INLINE hprint #-}

-- | Pad the left hand side of a string until it reaches @k@
-- characters wide, if necessary filling with character @c@.
left :: B.Buildable a => Int -> Char -> a -> Builder
left k c =
    fromLazyText . LT.justifyRight (fromIntegral k) c . toLazyText . B.build

-- | Pad the right hand side of a string until it reaches @k@
-- characters wide, if necessary filling with character @c@.
right :: B.Buildable a => Int -> Char -> a -> Builder
right k c =
    fromLazyText . LT.justifyLeft (fromIntegral k) c . toLazyText . B.build

-- | Render a floating point number, with the given number of digits
-- of precision.  Uses decimal notation for values between @0.1@ and
-- @9,999,999@, and scientific notation otherwise.
prec :: (Real a) =>
        Int
     -- ^ Number of digits of precision.
     -> a -> Builder
{-# RULES "prec/Double"
    forall d x. prec d (x::Double) = B.build (C.toPrecision d x) #-}
prec digits = B.build . C.toPrecision digits . realToFrac
{-# NOINLINE[0] prec #-}

-- | Render a floating point number using normal notation, with the
-- given number of decimal places.
fixed :: (Real a) =>
         Int
      -- ^ Number of digits of precision after the decimal.
      -> a -> Builder
fixed decs = B.build . C.toFixed decs . realToFrac
{-# RULES "fixed/Double"
    forall d x. fixed d (x::Double) = B.build (C.toFixed d x) #-}
{-# NOINLINE[0] fixed #-}

-- | Render a floating point number using scientific/engineering
-- notation (e.g. @2.3e123@), with the given number of decimal places.
expt :: (Real a) =>
        Int
     -- ^ Number of digits of precision after the decimal.
     -> a -> Builder
expt decs = B.build . C.toExponential decs . realToFrac
{-# RULES "expt/Double"
    forall d x. expt d (x::Double) = B.build (C.toExponential d x) #-}
{-# NOINLINE[0] expt #-}

-- | Render a floating point number using the smallest number of
-- digits that correctly represent it.
shortest :: (Real a) => a -> Builder
shortest = B.build . C.toShortest . realToFrac
{-# RULES "shortest/Double"
    forall x. shortest (x::Double) = B.build (C.toShortest x) #-}
{-# NOINLINE[0] shortest #-}

-- | Render an integer using hexadecimal notation.  (No leading "0x"
-- is added.)
hex :: Integral a => a -> Builder
hex = B.build . Hex
{-# INLINE hex #-}