Copyright | (c) Henning Thielemann 2008-2011 |
---|---|
License | GPL |
Maintainer | synthesizer@henning-thielemann.de |
Stability | provisional |
Portability | requires multi-parameter type classes |
Safe Haskell | None |
Language | Haskell2010 |
- amplify :: C y amp => y -> T s u t (Single s (Numeric amp) (Numeric amp) yv yv)
- amplifyDimension :: (C y, C u, C v0, C v1) => T v0 y -> T s u t (Single s (Dimensional v1 y) (Dimensional (Mul v0 v1) y) yv yv)
- amplifyScalarDimension :: (C y, C u, C v) => T v y -> T s u t (Single s (Dimensional Scalar y) (Dimensional v y) yv yv)
- negate :: C (Displacement sample) => T s u t (T s sample sample)
- envelope :: C y => T s u t (T s (Flat y, Numeric amp y) (Numeric amp y))
- envelopeScalarDimension :: (C y, C u, C v) => T s u t (T s (Dimensional Scalar y y, Dimensional v y y) (Dimensional v y y))
- envelopeVector :: C y (Displacement sample) => T s u t (T s (Flat y, sample) sample)
- envelopeVectorDimension :: (C y0 yv, C y, C u, C v0, C v1) => T s u t (T s (Dimensional v0 y y0, Dimensional v1 y yv) (Dimensional (Mul v0 v1) y yv))
- differentiate :: (C yv, C q, C u, C v) => T s u q (Single s (Dimensional v q) (Dimensional (DimensionGradient u v) q) yv yv)
- integrate :: (C yv, C q, C u, C v) => T s u q (T s (Dimensional v q yv) (Dimensional (Mul u v) q yv))
Non-recursive
Amplification
amplify :: C y amp => y -> T s u t (Single s (Numeric amp) (Numeric amp) yv yv) Source #
The amplification factor must be positive.
amplifyDimension :: (C y, C u, C v0, C v1) => T v0 y -> T s u t (Single s (Dimensional v1 y) (Dimensional (Mul v0 v1) y) yv yv) Source #
amplifyScalarDimension :: (C y, C u, C v) => T v y -> T s u t (Single s (Dimensional Scalar y) (Dimensional v y) yv yv) Source #
envelopeScalarDimension :: (C y, C u, C v) => T s u t (T s (Dimensional Scalar y y, Dimensional v y y) (Dimensional v y y)) Source #
envelopeVector :: C y (Displacement sample) => T s u t (T s (Flat y, sample) sample) Source #
envelopeVectorDimension :: (C y0 yv, C y, C u, C v0, C v1) => T s u t (T s (Dimensional v0 y y0, Dimensional v1 y yv) (Dimensional (Mul v0 v1) y yv)) Source #
Filter operators from calculus
differentiate :: (C yv, C q, C u, C v) => T s u q (Single s (Dimensional v q) (Dimensional (DimensionGradient u v) q) yv yv) Source #