module Data.StepFunction
( Transition(..)
, StepFunction
, mkStepFunction
, valAt
, transitions
, merge ) where
import Data.List (sort,
unfoldr,
mapAccumL,
groupBy)
import Data.Function (on)
import Data.Maybe (fromMaybe)
data Transition x y =
Transition
{
x_val :: x
, y_val :: y
, left_closed :: Bool
} deriving (Eq,Show)
instance Functor (Transition x) where
fmap f (Transition x y lc) = Transition x (f y) lc
data StepFunction x y =
StepFunction
{
def :: y
, transitions :: [Transition x y]
} deriving (Eq,Show)
instance (Ord x,Eq y) => Ord (Transition x y) where
compare t1 t2 | x_val t1 < x_val t2 = LT
| x_val t1 > x_val t2 = GT
| x_val t1 == x_val t2 && left_closed t1 && (not $ left_closed t2) = LT
| x_val t1 == x_val t2 && (not $ left_closed t1) && left_closed t2 = GT
| otherwise = EQ
mkStepFunction :: (Ord x,Eq y)
=> y
-> [Transition x y]
-> StepFunction x y
mkStepFunction x xs = StepFunction x $ simplify $ sort xs
leq :: Ord x
=> Transition x y
-> x
-> Bool
leq trans x = x_val trans <= x
valAt :: Ord x
=> x
-> StepFunction x y
-> y
valAt x (StepFunction def trans) =
case reverse $ takeWhile (`leq` x) trans of
[] -> def
[h] -> if left_closed h || x_val h < x then y_val h else def
(h:h':_) -> if left_closed h || x_val h < x then y_val h else y_val h'
merge :: (Ord x,Eq c)
=> (a -> b -> c)
-> StepFunction x a
-> StepFunction x b
-> StepFunction x c
merge f s1 s2 =
StepFunction newDef $ simplify $ mergeT f (def s1,def s2) (transitions s1) (transitions s2)
where newDef = f (def s1) (def s2)
x_pos :: Transition x y
-> (x,Bool)
x_pos t = (x_val t,not $ left_closed t)
mergeT :: Ord x
=> (a -> b -> c)
-> (a,b)
-> [Transition x a]
-> [Transition x b]
-> [Transition x c]
mergeT _ _ [] [] = []
mergeT f (_,acc) as [] = map (fmap (`f` acc)) as
mergeT f (acc,_) [] bs = map (fmap (acc `f`)) bs
mergeT f acc (a:at) (b:bt) | x_pos a < x_pos b = mergeLeft f acc a at (b:bt)
| x_pos a > x_pos b = mergeRight f acc b (a:at) bt
| otherwise = mergeBoth f a b at bt
mergeLeft f (a_acc,b_acc) a as bs =
let nval = f (y_val a) b_acc
ntrans = Transition (x_val a) nval (left_closed a) in
ntrans:(mergeT f (y_val a,b_acc) as bs)
mergeRight f (a_acc,b_acc) b as bs =
let nval = f a_acc (y_val b)
ntrans = Transition (x_val b) nval (left_closed b) in
ntrans:(mergeT f (a_acc,y_val b) as bs)
mergeBoth f a b as bs =
let nval = f (y_val a) (y_val b)
ntrans = Transition (x_val a) nval (left_closed a) in
ntrans:(mergeT f (y_val a,y_val b) as bs)
simplify :: (Eq y,Eq x)
=> [Transition x y]
-> [Transition x y]
simplify = simplifyY . simplifyX
where simplifyY = concat . map (take 1) . groupBy ((==) `on` y_val)
simplifyX = concat . map (take 1 . reverse) . groupBy ((==) `on` x_pos)