module Statistics.Test.KolmogorovSmirnov (
kolmogorovSmirnovTest
, kolmogorovSmirnovTestCdf
, kolmogorovSmirnovTest2
, kolmogorovSmirnovCdfD
, kolmogorovSmirnovD
, kolmogorovSmirnov2D
, kolmogorovSmirnovProbability
, module Statistics.Test.Types
) where
import Control.Monad (when)
import Prelude hiding (exponent, sum)
import Statistics.Distribution (Distribution(..))
import Statistics.Function (gsort, unsafeModify)
import Statistics.Matrix (center, exponent, for, fromVector, power)
import Statistics.Test.Types
import Statistics.Types (mkPValue)
import qualified Data.Vector as V
import qualified Data.Vector.Storable as S
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Generic as G
import Data.Vector.Generic ((!))
import qualified Data.Vector.Unboxed.Mutable as M
kolmogorovSmirnovTest :: (Distribution d, G.Vector v Double)
=> d
-> v Double
-> Maybe (Test ())
kolmogorovSmirnovTest d
= kolmogorovSmirnovTestCdf (cumulative d)
kolmogorovSmirnovTestCdf :: (G.Vector v Double)
=> (Double -> Double)
-> v Double
-> Maybe (Test ())
kolmogorovSmirnovTestCdf cdf sample
| G.null sample = Nothing
| otherwise = Just Test
{ testSignificance = mkPValue $ 1 prob
, testStatistics = d
, testDistribution = ()
}
where
d = kolmogorovSmirnovCdfD cdf sample
prob = kolmogorovSmirnovProbability (G.length sample) d
kolmogorovSmirnovTest2 :: (G.Vector v Double)
=> v Double
-> v Double
-> Maybe (Test ())
kolmogorovSmirnovTest2 xs1 xs2
| G.null xs1 || G.null xs2 = Nothing
| otherwise = Just Test
{ testSignificance = mkPValue $ 1 prob d
, testStatistics = d
, testDistribution = ()
}
where
d = kolmogorovSmirnov2D xs1 xs2
* (en + 0.12 + 0.11/en)
n1 = fromIntegral (G.length xs1)
n2 = fromIntegral (G.length xs2)
en = sqrt $ n1 * n2 / (n1 + n2)
prob z
| z < 0 = error "kolmogorovSmirnov2D: internal error"
| z == 0 = 0
| z < 1.18 = let y = exp( 1.23370055013616983 / (z*z) )
in 2.25675833419102515 * sqrt( log y ) * (y + y**9 + y**25 + y**49)
| otherwise = let x = exp(2 * z * z)
in 1 2*(x x**4 + x**9)
kolmogorovSmirnovCdfD :: G.Vector v Double
=> (Double -> Double)
-> v Double
-> Double
kolmogorovSmirnovCdfD cdf sample
| G.null sample = 0
| otherwise = G.maximum
$ G.zipWith3 (\p a b -> abs (pa) `max` abs (pb))
ps steps (G.tail steps)
where
xs = gsort sample
n = G.length xs
ps = G.map cdf xs
steps = G.map (/ fromIntegral n)
$ G.generate (n+1) fromIntegral
kolmogorovSmirnovD :: (Distribution d, G.Vector v Double)
=> d
-> v Double
-> Double
kolmogorovSmirnovD d = kolmogorovSmirnovCdfD (cumulative d)
kolmogorovSmirnov2D :: (G.Vector v Double)
=> v Double
-> v Double
-> Double
kolmogorovSmirnov2D sample1 sample2
| G.null sample1 || G.null sample2 = 0
| otherwise = worker 0 0 0
where
xs1 = gsort sample1
xs2 = gsort sample2
n1 = G.length xs1
n2 = G.length xs2
en1 = fromIntegral n1
en2 = fromIntegral n2
skip x i xs = go (i+1)
where go n | n >= G.length xs = n
| xs ! n == x = go (n+1)
| otherwise = n
worker d i1 i2
| i1 >= n1 || i2 >= n2 = d
| otherwise = worker d' i1' i2'
where
d1 = xs1 ! i1
d2 = xs2 ! i2
i1' | d1 <= d2 = skip d1 i1 xs1
| otherwise = i1
i2' | d2 <= d1 = skip d2 i2 xs2
| otherwise = i2
d' = max d (abs $ fromIntegral i1' / en1 fromIntegral i2' / en2)
kolmogorovSmirnovProbability :: Int
-> Double
-> Double
kolmogorovSmirnovProbability n d
| s > 7.24 || (s > 3.76 && n > 99) = 1 2 * exp( (2.000071 + 0.331 / sqrt n' + 1.409 / n') * s)
| otherwise = fini $ matrix `power` n
where
s = n' * d * d
n' = fromIntegral n
size = 2*k 1
k = floor (n' * d) + 1
h = fromIntegral k n' * d
matrix =
let m = U.create $ do
mat <- M.new (size*size)
for 0 size $ \row ->
for 0 size $ \col -> do
let val | row + 1 >= col = 1
| otherwise = 0 :: Double
M.write mat (row * size + col) val
for 0 size $ \i -> do
let delta = h ^^ (i + 1)
unsafeModify mat (i * size) (subtract delta)
unsafeModify mat (size * size 1 i) (subtract delta)
when (2*h > 1) $ do
unsafeModify mat ((size 1) * size) (+ ((2*h 1) ^ size))
let divide g num
| num == size = return ()
| otherwise = do for num size $ \i ->
unsafeModify mat (i * (size + 1) num) (/ g)
divide (g * fromIntegral (num+2)) (num+1)
divide 2 1
return mat
in fromVector size size m
fini m = loop 1 (center m) (exponent m)
where
loop i ss eQ
| i > n = ss * 10 ^^ eQ
| ss' < 1e-140 = loop (i+1) (ss' * 1e140) (eQ 140)
| otherwise = loop (i+1) ss' eQ
where ss' = ss * fromIntegral i / fromIntegral n