module Statistics.Distribution.StudentT (
StudentT
, studentT
, studentTE
, studentTUnstandardized
, studentTndf
) where
import Control.Applicative
import Data.Aeson (FromJSON(..), ToJSON, Value(..), (.:))
import Data.Binary (Binary(..))
import Data.Data (Data, Typeable)
import GHC.Generics (Generic)
import Numeric.SpecFunctions (
logBeta, incompleteBeta, invIncompleteBeta, digamma)
import qualified Statistics.Distribution as D
import Statistics.Distribution.Transform (LinearTransform (..))
import Statistics.Internal
newtype StudentT = StudentT { studentTndf :: Double }
deriving (Eq, Typeable, Data, Generic)
instance Show StudentT where
showsPrec i (StudentT ndf) = defaultShow1 "studentT" ndf i
instance Read StudentT where
readPrec = defaultReadPrecM1 "studentT" studentTE
instance ToJSON StudentT
instance FromJSON StudentT where
parseJSON (Object v) = do
ndf <- v .: "studentTndf"
maybe (fail $ errMsg ndf) return $ studentTE ndf
parseJSON _ = empty
instance Binary StudentT where
put = put . studentTndf
get = do
ndf <- get
maybe (fail $ errMsg ndf) return $ studentTE ndf
studentT :: Double -> StudentT
studentT ndf = maybe (error $ errMsg ndf) id $ studentTE ndf
studentTE :: Double -> Maybe StudentT
studentTE ndf
| ndf > 0 = Just (StudentT ndf)
| otherwise = Nothing
errMsg :: Double -> String
errMsg _ = modErr "studentT" "non-positive number of degrees of freedom"
instance D.Distribution StudentT where
cumulative = cumulative
complCumulative = complCumulative
instance D.ContDistr StudentT where
density d@(StudentT ndf) x = exp (logDensityUnscaled d x) / sqrt ndf
logDensity d@(StudentT ndf) x = logDensityUnscaled d x log (sqrt ndf)
quantile = quantile
cumulative :: StudentT -> Double -> Double
cumulative (StudentT ndf) x
| x > 0 = 1 0.5 * ibeta
| otherwise = 0.5 * ibeta
where
ibeta = incompleteBeta (0.5 * ndf) 0.5 (ndf / (ndf + x*x))
complCumulative :: StudentT -> Double -> Double
complCumulative (StudentT ndf) x
| x > 0 = 0.5 * ibeta
| otherwise = 1 0.5 * ibeta
where
ibeta = incompleteBeta (0.5 * ndf) 0.5 (ndf / (ndf + x*x))
logDensityUnscaled :: StudentT -> Double -> Double
logDensityUnscaled (StudentT ndf) x =
log (ndf / (ndf + x*x)) * (0.5 * (1 + ndf)) logBeta 0.5 (0.5 * ndf)
quantile :: StudentT -> Double -> Double
quantile (StudentT ndf) p
| p >= 0 && p <= 1 =
let x = invIncompleteBeta (0.5 * ndf) 0.5 (2 * min p (1 p))
in case sqrt $ ndf * (1 x) / x of
r | p < 0.5 -> r
| otherwise -> r
| otherwise = modErr "quantile" $ "p must be in [0,1] range. Got: "++show p
instance D.MaybeMean StudentT where
maybeMean (StudentT ndf) | ndf > 1 = Just 0
| otherwise = Nothing
instance D.MaybeVariance StudentT where
maybeVariance (StudentT ndf) | ndf > 2 = Just $! ndf / (ndf 2)
| otherwise = Nothing
instance D.Entropy StudentT where
entropy (StudentT ndf) =
0.5 * (ndf+1) * (digamma ((1+ndf)/2) digamma(ndf/2))
+ log (sqrt ndf)
+ logBeta (ndf/2) 0.5
instance D.MaybeEntropy StudentT where
maybeEntropy = Just . D.entropy
instance D.ContGen StudentT where
genContVar = D.genContinuous
studentTUnstandardized :: Double
-> Double
-> Double
-> LinearTransform StudentT
studentTUnstandardized ndf mu sigma
| sigma > 0 = LinearTransform mu sigma $ studentT ndf
| otherwise = modErr "studentTUnstandardized" $ "sigma must be > 0. Got: " ++ show sigma
modErr :: String -> String -> a
modErr fun msg = error $ "Statistics.Distribution.StudentT." ++ fun ++ ": " ++ msg