{-# LANGUAGE CPP #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE FlexibleContexts #-} #if __GLASGOW_HASKELL__ >= 810 {-# LANGUAGE StandaloneKindSignatures #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Square -- License : BSD-style (see the file LICENSE) -- Maintainer : sjoerd@w3future.com -- ----------------------------------------------------------------------------- module Data.Square where import Data.Functor.Compose.List import Data.Profunctor import qualified Data.Profunctor.Composition as P import Data.Profunctor.Composition.List import Data.Type.List #if __GLASGOW_HASKELL__ >= 810 import Data.Kind #endif -- * Double category -- $doubleCategory -- There is a double category of Haskell functors and profunctors. -- -- The squares in this double category are natural transformations. -- | -- > +-----+ -- > | | -- > | | -- > | | -- > +-----+ -- -- > forall a b. (a -> b) -> (a -> b) -- -- The empty square is the identity transformation. emptySquare :: Square '[] '[] '[] '[] emptySquare = mkSquare id -- | -- > +-----+ -- > | | -- > p-----p -- > | | -- > +-----+ -- -- > forall a b. p a b -> p a b -- -- Profunctors are drawn as horizontal lines. -- -- Note that `emptySquare` is `proId` for the profunctor @(->)@. -- We don't draw a line for @(->)@ because it is the identity for profunctor composition. proId :: Profunctor p => Square '[p] '[p] '[] '[] proId = mkSquare id -- | -- > +--f--+ -- > | | | -- > | v | -- > | | | -- > +--f--+ -- -- > forall a b. (a -> b) -> (f a -> f b) -- -- Functors are drawn with vertical lines with arrow heads. -- You will recognize the above type as `fmap`! -- -- We don't draw lines for the identity functor, because it is the identity for functor composition. funId :: Functor f => Square '[] '[] '[f] '[f] funId = mkSquare fmap -- | -- > +--f--+ -- > | | | -- > | @ | -- > | | | -- > +--g--+ -- -- > forall a b. (a -> b) -> (f a -> g b) -- -- Non-identity transformations are drawn with an @\@@ in the middle. -- Natural transformations between haskell functors are usualy given the type -- @forall a. f a -> g a@. The type above you get when `fmap`ping before or after. -- (It doesn't matter which, because of naturality!) funNat :: (Functor f, Functor g) => (f ~> g) -> Square '[] '[] '[f] '[g] funNat n = mkSquare ((n .) . fmap) -- | -- > +-----+ -- > | | -- > p--@--q -- > | | -- > +-----+ -- -- > forall a b. p a b -> q a b -- -- Natural transformations between profunctors. proNat :: (Profunctor p, Profunctor q) => (p :-> q) -> Square '[p] '[q] '[] '[] proNat = mkSquare -- | -- > +--f--+ -- > | v | -- > p--@--q -- > | v | -- > +--g--+ -- -- > forall a b. p a b -> q (f a) (g b) -- -- The complete definition of a square is a combination of natural transformations -- between functors and natural transformations between profunctors. -- -- To make type inferencing easier the above type is wrapped by a newtype. #if __GLASGOW_HASKELL__ >= 810 type SquareNT :: (a -> b -> Type) -> (c -> d -> Type) -> (a -> c) -> (b -> d) -> Type #endif newtype SquareNT p q f g = Square { unSquare :: forall a b. p a b -> q (f a) (g b) } -- | To make composing squares associative, this library uses squares with lists of functors and profunctors, -- which are composed together. -- -- > FList '[] a ~ a -- > FList '[f, g, h] a ~ h (g (f a)) -- > PList '[] a b ~ a -> b -- > PList '[p, q, r] a b ~ (p a x, q x y, r y b) type Square ps qs fs gs = SquareNT (PList ps) (PList qs) (FList fs) (FList gs) -- | A helper function to add the wrappers needed for `PList` and `FList`. mkSquare :: (IsPList ps, IsPList qs, IsFList fs, IsFList gs, Profunctor (PList qs)) => (forall a b. PlainP ps a b -> PlainP qs (PlainF fs a) (PlainF gs b)) -> Square ps qs fs gs -- ^ mkSquare n = Square (dimap toPlainF fromPlainF . dimap toPlainP fromPlainP n) -- | A helper function to remove the wrappers needed for `PList` and `FList`. runSquare :: (IsPList ps, IsPList qs, IsFList fs, IsFList gs, Profunctor (PList qs)) => Square ps qs fs gs -> PlainP ps a b -> PlainP qs (PlainF fs a) (PlainF gs b) -- ^ runSquare (Square n) = dimap fromPlainP toPlainP (dimap fromPlainF toPlainF . n) -- | -- > +--f--+ +--h--+ +--f--h--+ -- > | v | | v | | v v | -- > p--@--q ||| q--@--r ==> p--@--@--r -- > | v | | v | | v v | -- > +--g--+ +--i--+ +--g--i--+ -- -- Horizontal composition of squares. `proId` is the identity of `(|||)`. -- This is regular function composition of the underlying functions. infixl 6 ||| (|||) :: (Profunctor (PList rs), IsFList fs, IsFList gs, Functor (FList hs), Functor (FList is)) => Square ps qs fs gs -> Square qs rs hs is -> Square ps rs (fs ++ hs) (gs ++ is) -- ^ Square pq ||| Square qr = Square (dimap funappend fappend . qr . pq) -- | -- > +--f--+ -- > | v | -- > p--@--q +--f--+ -- > | v | | v | -- > +--g--+ p--@--q -- > === ==> | v | -- > +--g--+ r--@--s -- > | v | | v | -- > r--@--s +--h--+ -- > | v | -- > +--h--+ -- -- Vertical composition of squares. `funId` is the identity of `(===)`. infixl 5 === (===) :: (IsPList ps, IsPList qs, Profunctor (PList qs), Profunctor (PList ss)) => Square ps qs fs gs -> Square rs ss gs hs -> Square (ps ++ rs) (qs ++ ss) fs hs -- ^ Square pq === Square rs = Square (\pr -> case punappend pr of P.Procompose r p -> pappend (P.Procompose (rs r) (pq p))) -- * Proarrow equipment -- -- $proarrowEquipment -- The double category of haskell functors and profunctors is a proarrow equipment. -- Which means that we can "bend" functors to become profunctors. -- | -- > +--f--+ -- > | v | -- > | \->f -- > | | -- > +-----+ -- -- A functor @f@ can be bent to the right to become the profunctor @`Star` f@. toRight :: Functor f => Square '[] '[Star f] '[f] '[] toRight = mkSquare (Star . fmap) -- | -- > +--f--+ -- > | v | -- > f<-/ | -- > | | -- > +-----+ -- -- A functor @f@ can be bent to the left to become the profunctor @`Costar` f@. toLeft :: Square '[Costar f] '[] '[f] '[] toLeft = mkSquare runCostar -- | -- > +-----+ -- > | | -- > | /- | v | -- > +--f--+ -- -- The profunctor @`Costar` f@ can be bent down to become the functor @f@ again. fromRight :: Functor f => Square '[] '[Costar f] '[] '[f] fromRight = mkSquare (Costar . fmap) -- | -- > +-----+ -- > | | -- > f>-\ | -- > | v | -- > +--f--+ -- -- The profunctor @`Star` f@ can be bent down to become the functor @f@ again. fromLeft :: Square '[Star f] '[] '[] '[f] fromLeft = mkSquare runStar -- | -- > +-----+ -- > f>-\ | fromLeft -- > | v | === -- > f<-/ | toLeft -- > +-----+ -- -- `fromLeft` and `toLeft` can be composed vertically to bend @`Star` f@ back to @`Costar` f@. uLeft :: Functor f => Square '[Star f, Costar f] '[] '[] '[] uLeft = fromLeft === toLeft -- | -- > +-----+ -- > | /- | v | === -- > | \->f toRight -- > +-----+ -- -- `fromRight` and `toRight` can be composed vertically to bend @`Costar` f@ to @`Star` f@. uRight :: Functor f => Square '[] '[Costar f, Star f] '[] '[] uRight = fromRight === toRight -- | -- > +-f-g-+ -- > | v \>g funId ||| toRight -- > | | | === -- > | \-->f toRight -- > +-----+ toRight2 :: (Functor f, Functor g) => Square '[] '[Star g, Star f] '[f, g] '[] toRight2 = (funId ||| toRight) === toRight -- | -- > +-f-g-+ -- > f | | | === -- > g<--/ | toLeft -- > +-----+ toLeft2 :: (Functor f, Functor g) => Square '[Costar f, Costar g] '[] '[f, g] '[] toLeft2 = (toLeft ||| funId) === toLeft -- | -- > +-----+ -- > | /-- | | | === -- > | v / +-f-g-+ fromRight2 :: (Functor f, Functor g) => Square '[] '[Costar f, Costar g] '[] '[f, g] fromRight2 = fromRight === (funId ||| fromRight) -- | -- > +-----+ -- > g>--\ | fromLeft -- > | | | === -- > f>\ | | fromLeft ||| funId -- > +-f-g-+ fromLeft2 :: (Functor f, Functor g) => Square '[Star g, Star f] '[] '[] '[f, g] fromLeft2 = fromLeft === (fromLeft ||| funId) -- | -- > +f-f-f+ +--f--+ spiderLemma n = -- > |v v v| f> v | \|/ | | \|/ | === -- > p--@--q ==> p--@--q n -- > | /|\ | | /|\ | === -- > |v v v| g< v >g toLeft ||| funId ||| toRight -- > +g-g-g+ +--g--+ -- -- The spider lemma is an example how bending wires can also be seen as sliding functors around corners. spiderLemma :: (Profunctor p, Profunctor q, Functor f1, Functor f2, Functor f3, Functor g1, Functor g2, Functor g3) => Square '[p] '[q] '[f1, f2, f3] '[g1, g2, g3] -> Square '[Star f1, p, Costar g1] '[Costar f3, q, Star g3] '[f2] '[g2] -- ^ spiderLemma n = fromLeft ||| funId ||| fromRight === n === toLeft ||| funId ||| toRight -- |> spiderLemma' n = (toRight === proId === fromRight) ||| n ||| (toLeft === proId === fromLeft) -- -- The spider lemma in the other direction. spiderLemma' :: (Profunctor p, Profunctor q, Functor f1, Functor f2, Functor f3, Functor g1, Functor g2, Functor g3) => Square '[Star f1, p, Costar g1] '[Costar f3, q, Star g3] '[f2] '[g2] -> Square '[p] '[q] '[f1, f2, f3] '[g1, g2, g3] -- ^ spiderLemma' n = (toRight === proId === fromRight) ||| n ||| (toLeft === proId === fromLeft) -- * In other categories than Hask -- $otherCategories -- > A--f--C -- > | v | -- > p--@--q -- > | v | -- > B--g--D -- -- Squares can be generalized further by choosing a different category for each quadrant. -- To use this, `SquareNT` has been made kind polymorphic: -- -- > type SquareNT :: (a -> b -> Type) -> (c -> d -> Type) -> (a -> c) -> (b -> d) -> Type -- -- This library is mostly about staying in Hask, but it is interesting to use f.e. the -- product category @Hask × Hask@ or the unit category. -- | -- > H²-f--H -- > | v | -- > p--@--q H = Hask, H² = Hask x Hask -- > | v | -- > H²-g--H -- type Square21 ps1 ps2 qs f g = SquareNT (PList ps1 :**: PList ps2) (PList qs) (UncurryF f) (UncurryF g) -- | Combine two profunctors from Hask to a profunctor from Hask x Hask data (p1 :**: p2) a b where (:**:) :: p1 a1 b1 -> p2 a2 b2 -> (p1 :**: p2) '(a1, a2) '(b1, b2) -- | Uncurry the kind of a bifunctor. -- -- > type UncurryF :: (a -> b -> Type) -> (a, b) -> Type #if __GLASGOW_HASKELL__ >= 810 type UncurryF :: (a -> b -> Type) -> (a, b) -> Type #endif data UncurryF f a where UncurryF :: { curryF :: f a b } -> UncurryF f '(a, b) -- | -- > 1--a--H -- > | v | -- > U--@--q 1 = Hask^0 = (), H = Hask -- > | v | -- > 1--b--H -- type Square01 qs a b = SquareNT Unit (PList qs) (ValueF a) (ValueF b) -- | The boring profunctor from and to the unit category. data Unit a b where Unit :: Unit '() '() -- | Values as a functor from the unit category. data ValueF x u where ValueF :: a -> ValueF a '()