------------------------------------------------------------------------ -- | -- Module : Data.Datamining.Clustering.SGM -- Copyright : (c) Amy de Buitléir 2012-2018 -- License : BSD-style -- Maintainer : amy@nualeargais.ie -- Stability : experimental -- Portability : portable -- -- A Self-generating Model (SGM). An SGM maps input patterns -- onto a set, where each element in the set is a model of the input -- data. An SGM is like a Kohonen Self-organising Map (SOM), except: -- -- * Instead of a grid, it uses a simple set of unconnected models. -- Since the models are unconnected, only the model that best matches -- the input is ever updated. This makes it faster, however, -- topological relationships within the input data are not preserved. -- * New models are created on-the-fly when no existing model is -- similar enough to an input pattern. If the SGM is at capacity, -- the least useful model will be deleted. -- -- This implementation supports the use of non-numeric patterns. -- -- In layman's terms, a SGM can be useful when you you want to build -- a set of models on some data. A tutorial is available at -- <https://github.com/mhwombat/som/wiki>. -- -- References: -- -- * Amy de Buitléir, Mark Daly, and Michael Russell. -- The Self-generating Model: an Adaptation of the Self-organizing Map -- for Intelligent Agents and Data Mining. -- In: Artificial Life and Intelligent Agents: Second International -- Symposium, ALIA 2016, Birmingham, UK, June 14-15, 2016, -- Revised Selected Papers. -- Ed. by Peter R. Lewis et al. Springer International Publishing, -- 2018, pp. 59–72. -- Available at http://amydebuitleir.eu/publications/. -- -- * Amy de Buitléir, Michael Russell, and Mark Daly. -- Wains: A pattern-seeking artificial life species. -- Artificial Life, (18)4:399–423, 2012. -- Available at http://amydebuitleir.eu/publications/. -- -- * Kohonen, T. (1982). Self-organized formation of topologically -- correct feature maps. Biological Cybernetics, 43 (1), 59–69. ------------------------------------------------------------------------ module Data.Datamining.Clustering.SGM ( -- * Construction SGM(..), makeSGM, -- * Deconstruction time, isEmpty, numModels, modelMap, counterMap, modelAt, -- models, -- counters, -- * Learning and classification exponential, classify, trainAndClassify, train, trainBatch ) where import Data.Datamining.Clustering.SGMInternal