module Data.Sized.Sparse.Matrix where
import Data.Array.Base as B
import Data.Ix
import Data.Sized.Fin as X
import qualified Data.Sized.Matrix as M
import qualified Data.Map as Map
import Data.Map (Map)
import qualified Data.Set as Set
import Data.Set (Set)
import Control.Applicative
data SpMatrix ix a = SpMatrix a (Map ix a)
instance Functor (SpMatrix ix) where
fmap f (SpMatrix d mp) = SpMatrix (f d) (fmap f mp)
fromAssocList :: (Ord i, Eq a) => a -> [(i,a)] -> SpMatrix i a
fromAssocList d xs = SpMatrix d (Map.fromList [ (i,a) | (i,a) <- xs, a /= d ])
toAssocList :: (SpMatrix i a) -> (a,[(i,a)])
toAssocList (SpMatrix d mp) = (d,Map.toList mp)
getElem :: (Ord ix) => SpMatrix ix a -> ix -> a
getElem (SpMatrix d sm) ix = Map.findWithDefault d ix sm
fill :: (Bounded ix, Ix ix) => SpMatrix ix a -> M.Matrix ix a
fill sm = M.forAll $ \ i -> getElem sm i
prune :: (Bounded ix, Ix ix, Eq a) => a -> SpMatrix ix a -> SpMatrix ix a
prune d sm@(SpMatrix d' m) | d == d' = SpMatrix d (Map.filter (/= d) m)
| otherwise = sparse d (fill sm)
sparse :: (Bounded ix, Ix ix, Eq a) => a -> M.Matrix ix a -> SpMatrix ix a
sparse d other = SpMatrix d (Map.fromList [ (i,v) | (i,v) <- assocs other, v /= d ])
mm :: (Bounded m, Ix m, Bounded n, Ix n, Bounded m', Ix m', Bounded n', Ix n', n ~ m', Num a, Eq a) =>
SpMatrix (m,n) a -> SpMatrix (m',n') a -> SpMatrix (m,n') a
mm s1 s2 = SpMatrix 0 mp
where
mp = Map.fromList [ ((x,y),v)
| (x,y) <- X.universe
, let s = (rs B.! x) `Set.intersection` (cs B.! y)
, not (Set.null s)
, let v = foldb1 (+) [(getElem s1 (x,k)) * (getElem s2 (k,y)) | k <- Set.toList s ]
, v /= 0
]
(SpMatrix _ mp1) = prune 0 s1
(SpMatrix _ mp2) = prune 0 s2
rs = rowSets (Map.keysSet mp1)
cs = columnSets (Map.keysSet mp2)
foldb1 _ [x] = x
foldb1 f xs = foldb1 f (take len_before xs) `f` foldb1 f (drop len_before xs)
where len = length xs
len_before = len `div` 2
rowSets :: (Bounded a, Ix a, Ord b) => Set (a,b) -> M.Matrix a (Set b)
rowSets set = B.accum f (pure Set.empty) (Set.toList set)
where
f set' e = Set.insert e set'
columnSets :: (Bounded b, Ix b, Ord a) => Set (a,b) -> M.Matrix b (Set a)
columnSets = rowSets . Set.map (\ (a,b) -> (b,a))
instance (Bounded i, Ix i) => Applicative (SpMatrix i) where
pure a = SpMatrix a (Map.empty)
sm1@(SpMatrix d1 m1) <*> sm2@(SpMatrix d2 m2)
= SpMatrix (d1 d2) (Map.fromList [ (k, (getElem sm1 k) (getElem sm2 k)) | k <- Set.toList keys ])
where keys = Map.keysSet m1 `Set.union` Map.keysSet m2
instance (Show a, Show ix, Bounded ix, Ix ix) => Show (SpMatrix ix a) where
show m = show (fill m)
transpose :: (Bounded x, Ix x, Bounded y, Ix y, Eq a) => SpMatrix (x,y) a -> SpMatrix (y,x) a
transpose (SpMatrix d m) = SpMatrix d (Map.fromList [ ((y,x),a) | ((x,y),a) <- Map.assocs m ])
zipWith :: (Bounded x, Ix x) => (a -> b -> c) -> SpMatrix x a -> SpMatrix x b -> SpMatrix x c
zipWith f m1 m2 = pure f <*> m1 <*> m2