{-# LANGUAGE AllowAmbiguousTypes #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE ExplicitNamespaces #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilyDependencies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} #if __GLASGOW_HASKELL__ >= 806 {-# LANGUAGE QuantifiedConstraints #-} #else {-# LANGUAGE TypeInType #-} #endif #if __GLASGOW_HASKELL__ >= 810 {-# LANGUAGE StandaloneKindSignatures #-} #endif ----------------------------------------------------------------------------- -- | -- Module : Data.Singletons -- Copyright : (C) 2013 Richard Eisenberg -- License : BSD-style (see LICENSE) -- Maintainer : Ryan Scott -- Stability : experimental -- Portability : non-portable -- -- This module exports the basic definitions to use singletons. See also -- @Prelude.Singletons@ from the @singletons-base@ -- library, which re-exports this module alongside many singled definitions -- based on the "Prelude". -- -- You may also want to read -- the original papers presenting this library, available at -- -- and . -- ---------------------------------------------------------------------------- module Data.Singletons ( -- * Main singleton definitions Sing, SLambda(..), (@@), SingI(..), SingI1(..), sing1, SingI2(..), sing2, SingKind(..), -- * Working with singletons KindOf, SameKind, SingInstance(..), SomeSing(..), singInstance, pattern Sing, withSingI, withSomeSing, pattern FromSing, usingSingI1, usingSingI2, singByProxy, singByProxy1, singByProxy2, demote, demote1, demote2, singByProxy#, singByProxy1#, singByProxy2#, withSing, withSing1, withSing2, singThat, singThat1, singThat2, -- ** @WrappedSing@ WrappedSing(..), SWrappedSing(..), UnwrapSing, -- $SingletonsOfSingletons -- ** Defunctionalization TyFun, type (~>), TyCon1, TyCon2, TyCon3, TyCon4, TyCon5, TyCon6, TyCon7, TyCon8, Apply, type (@@), #if __GLASGOW_HASKELL__ >= 806 TyCon, ApplyTyCon, ApplyTyConAux1, ApplyTyConAux2, #endif -- ** Defunctionalized singletons -- | When calling a higher-order singleton function, you need to use a -- @singFun...@ function to wrap it. See 'singFun1'. singFun1, singFun2, singFun3, singFun4, singFun5, singFun6, singFun7, singFun8, unSingFun1, unSingFun2, unSingFun3, unSingFun4, unSingFun5, unSingFun6, unSingFun7, unSingFun8, -- $SLambdaPatternSynonyms pattern SLambda2, applySing2, pattern SLambda3, applySing3, pattern SLambda4, applySing4, pattern SLambda5, applySing5, pattern SLambda6, applySing6, pattern SLambda7, applySing7, pattern SLambda8, applySing8, -- | These type synonyms are exported only to improve error messages; users -- should not have to mention them. SingFunction1, SingFunction2, SingFunction3, SingFunction4, SingFunction5, SingFunction6, SingFunction7, SingFunction8, -- * Auxiliary functions Proxy(..), -- * Defunctionalization symbols DemoteSym0, DemoteSym1, SameKindSym0, SameKindSym1, SameKindSym2, KindOfSym0, KindOfSym1, type (~>@#@$), type (~>@#@$$), type (~>@#@$$$), ApplySym0, ApplySym1, ApplySym2, type (@@@#@$), type (@@@#@$$), type (@@@#@$$$) ) where import Data.Kind (Constraint, Type) import Data.Proxy (Proxy(..)) import GHC.Exts (Proxy#) import Unsafe.Coerce (unsafeCoerce) #if MIN_VERSION_base(4,17,0) import GHC.Exts (withDict) #endif -- | Convenient synonym to refer to the kind of a type variable: -- @type KindOf (a :: k) = k@ #if __GLASGOW_HASKELL__ >= 810 type KindOf :: k -> Type #endif type KindOf (a :: k) = k -- | Force GHC to unify the kinds of @a@ and @b@. Note that @SameKind a b@ is -- different from @KindOf a ~ KindOf b@ in that the former makes the kinds -- unify immediately, whereas the latter is a proposition that GHC considers -- as possibly false. #if __GLASGOW_HASKELL__ >= 810 type SameKind :: k -> k -> Constraint #endif type SameKind (a :: k) (b :: k) = (() :: Constraint) ---------------------------------------------------------------------- ---- Sing & friends -------------------------------------------------- ---------------------------------------------------------------------- -- | The singleton kind-indexed type family. #if __GLASGOW_HASKELL__ >= 810 type Sing :: k -> Type #endif type family Sing :: k -> Type {- Note [The kind of Sing] ~~~~~~~~~~~~~~~~~~~~~~~ It is important to define Sing like this: type Sing :: k -> Type type family Sing Or, equivalently, type family Sing :: k -> Type There are other conceivable ways to define Sing, but they all suffer from various drawbacks: * type family Sing :: forall k. k -> Type Surprisingly, this is /not/ equivalent to `type family Sing :: k -> Type`. The difference lies in their arity, i.e., the number of arguments that must be supplied in order to apply Sing. The former declaration has arity 0, while the latter has arity 1 (this is more obvious if you write the declaration as GHCi would display it with -fprint-explicit-kinds enabled: `type family Sing @k :: k -> Type`). The former declaration having arity 0 is actually what makes it useless. If we were to adopt an arity-0 definition of `Sing`, then in order to write `type instance Sing = SFoo`, GHC would require that `SFoo` must have the kind `forall k. k -> Type`, and moreover, the kind /must/ be polymorphic in `k`. This is undesirable, because in practice, every single `Sing` instance in the wild must monomorphize `k` (e.g., `SBool` monomorphizes it to `Bool`), so an arity-0 `Sing` simply won't work. In contrast, the current arity-1 definition of `Sing` /does/ let you monomorphize `k` in type family instances. * type family Sing (a :: k) = (r :: Type) | r -> a Again, this is not equivalent to `type family Sing :: k -> Type`. This version of `Sing` has arity 2, since one must supply both `k` and `a` in order to apply it. While an arity-2 `Sing` is not suffer from the same polymorphism issues as the arity-0 `Sing` in the previous bullet point, it does suffer from another issue in that it cannot be partially applied. This is because its `a` argument /must/ be supplied, whereas with the arity-1 `Sing`, it is perfectly admissible to write `Sing` without an explicit `a` argument. (Its invisible `k` argument is filled in automatically behind the scenes.) * type family Sing = (r :: k -> Type) | r -> k This is the same as `type family Sing :: k -> Type`, but with an injectivity annotation. Technically, this definition isn't /wrong/, but the injectivity annotation is actually unnecessary. Because the return kind of `Sing` is declared to be `k -> Type`, the `Sing` type constructor is automatically injective, so `Sing a1 ~ Sing a2` implies `a1 ~~ a2`. Another way of phrasing this, using the terminology of Dependent Haskell, is that the arrow in `Sing`'s return kind is /matchable/, which implies that `Sing` is an injective type constructor as a consequence. -} -- | A 'SingI' constraint is essentially an implicitly-passed singleton. -- If you need to satisfy this constraint with an explicit singleton, please -- see 'withSingI' or the 'Sing' pattern synonym. #if __GLASGOW_HASKELL__ >= 900 type SingI :: forall {k}. k -> Constraint #endif class SingI a where -- | Produce the singleton explicitly. You will likely need the @ScopedTypeVariables@ -- extension to use this method the way you want. sing :: Sing a -- | A version of the 'SingI' class lifted to unary type constructors. #if __GLASGOW_HASKELL__ >= 900 type SingI1 :: forall {k1} {k2}. (k1 -> k2) -> Constraint #endif class #if __GLASGOW_HASKELL__ >= 806 (forall x. SingI x => SingI (f x)) => #endif SingI1 f where -- | Lift an explicit singleton through a unary type constructor. -- You will likely need the @ScopedTypeVariables@ extension to use this -- method the way you want. liftSing :: Sing x -> Sing (f x) -- | Produce a singleton explicitly using implicit 'SingI1' and 'SingI' -- constraints. You will likely need the @ScopedTypeVariables@ extension to use -- this method the way you want. sing1 :: (SingI1 f, SingI x) => Sing (f x) sing1 = liftSing sing -- | A version of the 'SingI' class lifted to binary type constructors. #if __GLASGOW_HASKELL__ >= 900 type SingI2 :: forall {k1} {k2} {k3}. (k1 -> k2 -> k3) -> Constraint #endif class #if __GLASGOW_HASKELL__ >= 806 (forall x y. (SingI x, SingI y) => SingI (f x y)) => #endif SingI2 f where -- | Lift explicit singletons through a binary type constructor. -- You will likely need the @ScopedTypeVariables@ extension to use this -- method the way you want. liftSing2 :: Sing x -> Sing y -> Sing (f x y) -- | Produce a singleton explicitly using implicit 'SingI2' and 'SingI' -- constraints. You will likely need the @ScopedTypeVariables@ extension to use -- this method the way you want. sing2 :: (SingI2 f, SingI x, SingI y) => Sing (f x y) sing2 = liftSing2 sing sing -- | An explicitly bidirectional pattern synonym for implicit singletons. -- -- As an __expression__: Constructs a singleton @Sing a@ given a -- implicit singleton constraint @SingI a@. -- -- As a __pattern__: Matches on an explicit @Sing a@ witness bringing -- an implicit @SingI a@ constraint into scope. #if __GLASGOW_HASKELL__ >= 802 {-# COMPLETE Sing #-} #endif pattern Sing :: forall k (a :: k). () => SingI a => Sing a pattern Sing <- (singInstance -> SingInstance) where Sing = sing -- | The 'SingKind' class is a /kind/ class. It classifies all kinds -- for which singletons are defined. The class supports converting between a singleton -- type and the base (unrefined) type which it is built from. -- -- For a 'SingKind' instance to be well behaved, it should obey the following laws: -- -- @ -- 'toSing' . 'fromSing' ≡ 'SomeSing' -- (\\x -> 'withSomeSing' x 'fromSing') ≡ 'id' -- @ -- -- The final law can also be expressed in terms of the 'FromSing' pattern -- synonym: -- -- @ -- (\\('FromSing' sing) -> 'FromSing' sing) ≡ 'id' -- @ #if __GLASGOW_HASKELL__ >= 810 type SingKind :: Type -> Constraint #endif class SingKind k where -- | Get a base type from the promoted kind. For example, -- @Demote Bool@ will be the type @Bool@. Rarely, the type and kind do not -- match. For example, @Demote Nat@ is @Natural@. type Demote k = (r :: Type) | r -> k -- | Convert a singleton to its unrefined version. fromSing :: Sing (a :: k) -> Demote k -- | Convert an unrefined type to an existentially-quantified singleton type. toSing :: Demote k -> SomeSing k -- | An /existentially-quantified/ singleton. This type is useful when you want a -- singleton type, but there is no way of knowing, at compile-time, what the type -- index will be. To make use of this type, you will generally have to use a -- pattern-match: -- -- > foo :: Bool -> ... -- > foo b = case toSing b of -- > SomeSing sb -> {- fancy dependently-typed code with sb -} -- -- An example like the one above may be easier to write using 'withSomeSing'. #if __GLASGOW_HASKELL__ >= 810 type SomeSing :: Type -> Type #endif data SomeSing k where SomeSing :: Sing (a :: k) -> SomeSing k -- | An explicitly bidirectional pattern synonym for going between a -- singleton and the corresponding demoted term. -- -- As an __expression__: this takes a singleton to its demoted (base) -- type. -- -- >>> :t FromSing \@Bool -- FromSing \@Bool :: Sing a -> Bool -- >>> FromSing SFalse -- False -- -- As a __pattern__: It extracts a singleton from its demoted (base) -- type. -- -- @ -- singAnd :: 'Bool' -> 'Bool' -> 'SomeSing' 'Bool' -- singAnd ('FromSing' singBool1) ('FromSing' singBool2) = -- 'SomeSing' (singBool1 %&& singBool2) -- @ -- -- instead of writing it with 'withSomeSing': -- -- @ -- singAnd bool1 bool2 = -- 'withSomeSing' bool1 $ \singBool1 -> -- 'withSomeSing' bool2 $ \singBool2 -> -- 'SomeSing' (singBool1 %&& singBool2) -- @ #if __GLASGOW_HASKELL__ >= 802 {-# COMPLETE FromSing #-} #endif pattern FromSing :: SingKind k => forall (a :: k). Sing a -> Demote k pattern FromSing sng <- ((\demotedVal -> withSomeSing demotedVal SomeSing) -> SomeSing sng) where FromSing sng = fromSing sng ---------------------------------------------------------------------- ---- WrappedSing ----------------------------------------------------- ---------------------------------------------------------------------- -- | A newtype around 'Sing'. -- -- Since 'Sing' is a type family, it cannot be used directly in type class -- instances. As one example, one cannot write a catch-all -- @instance 'SDecide' k => 'TestEquality' ('Sing' k)@. On the other hand, -- 'WrappedSing' is a perfectly ordinary data type, which means that it is -- quite possible to define an -- @instance 'SDecide' k => 'TestEquality' ('WrappedSing' k)@. #if __GLASGOW_HASKELL__ >= 810 type WrappedSing :: k -> Type #endif newtype WrappedSing :: forall k. k -> Type where WrapSing :: forall k (a :: k). { unwrapSing :: Sing a } -> WrappedSing a -- | The singleton for 'WrappedSing's. Informally, this is the singleton type -- for other singletons. #if __GLASGOW_HASKELL__ >= 810 type SWrappedSing :: forall k (a :: k). WrappedSing a -> Type #endif newtype SWrappedSing :: forall k (a :: k). WrappedSing a -> Type where SWrapSing :: forall k (a :: k) (ws :: WrappedSing a). { sUnwrapSing :: Sing a } -> SWrappedSing ws type instance Sing = SWrappedSing #if __GLASGOW_HASKELL__ >= 810 type UnwrapSing :: forall k (a :: k). WrappedSing a -> Sing a #endif type family UnwrapSing (ws :: WrappedSing (a :: k)) :: Sing a where UnwrapSing ('WrapSing s) = s instance SingKind (WrappedSing a) where type Demote (WrappedSing a) = WrappedSing a fromSing (SWrapSing s) = WrapSing s toSing (WrapSing s) = SomeSing $ SWrapSing s instance forall a (s :: Sing a). SingI a => SingI ('WrapSing s) where sing = SWrapSing sing ---------------------------------------------------------------------- ---- SingInstance ---------------------------------------------------- ---------------------------------------------------------------------- -- | A 'SingInstance' wraps up a 'SingI' instance for explicit handling. #if __GLASGOW_HASKELL__ >= 810 type SingInstance :: k -> Type #endif data SingInstance (a :: k) where SingInstance :: SingI a => SingInstance a -- | Get an implicit singleton (a 'SingI' instance) from an explicit one. singInstance :: forall k (a :: k). Sing a -> SingInstance a singInstance s = with_sing_i SingInstance where with_sing_i :: (SingI a => SingInstance a) -> SingInstance a #if MIN_VERSION_base(4,17,0) with_sing_i = withDict @(SingI a) @(Sing a) s #else with_sing_i si = unsafeCoerce (Don'tInstantiate si) s -- dirty implementation of explicit-to-implicit conversion #if __GLASGOW_HASKELL__ >= 810 type DI :: k -> Type #endif newtype DI a = Don'tInstantiate (SingI a => SingInstance a) #endif ---------------------------------------------------------------------- ---- Defunctionalization --------------------------------------------- ---------------------------------------------------------------------- -- | Representation of the kind of a type-level function. The difference -- between term-level arrows and this type-level arrow is that at the term -- level applications can be unsaturated, whereas at the type level all -- applications have to be fully saturated. #if __GLASGOW_HASKELL__ >= 810 type TyFun :: Type -> Type -> Type #endif data TyFun :: Type -> Type -> Type -- | Something of kind @a '~>' b@ is a defunctionalized type function that is -- not necessarily generative or injective. Defunctionalized type functions -- (also called \"defunctionalization symbols\") can be partially applied, even -- if the original type function cannot be. For more information on how this -- works, see the "Promotion and partial application" section of the -- @@. -- -- Normal type-level arrows @(->)@ can be converted into defunctionalization -- arrows @('~>')@ by the use of the 'TyCon' family of types. (Refer to the -- Haddocks for 'TyCon1' to see an example of this in practice.) For this -- reason, we do not make an effort to define defunctionalization symbols for -- most type constructors of kind @a -> b@, as they can be used in -- defunctionalized settings by simply applying @TyCon{N}@ with an appropriate -- @N@. -- -- This includes the @(->)@ type constructor itself, which is of kind -- @'Type' -> 'Type' -> 'Type'@. One can turn it into something of kind -- @'Type' '~>' 'Type' '~>' 'Type'@ by writing @'TyCon2' (->)@, or something of -- kind @'Type' -> 'Type' '~>' 'Type'@ by writing @'TyCon1' ((->) t)@ -- (where @t :: 'Type'@). #if __GLASGOW_HASKELL__ >= 810 type (~>) :: Type -> Type -> Type #endif type a ~> b = TyFun a b -> Type infixr 0 ~> -- | Type level function application #if __GLASGOW_HASKELL__ >= 810 type Apply :: (k1 ~> k2) -> k1 -> k2 #endif type family Apply (f :: k1 ~> k2) (x :: k1) :: k2 -- | An infix synonym for `Apply` #if __GLASGOW_HASKELL__ >= 810 type (@@) :: (k1 ~> k2) -> k1 -> k2 #endif type a @@ b = Apply a b infixl 9 @@ #if __GLASGOW_HASKELL__ >= 806 -- | Workhorse for the 'TyCon1', etc., types. This can be used directly -- in place of any of the @TyConN@ types, but it will work only with -- /monomorphic/ types. When GHC#14645 is fixed, this should fully supersede -- the @TyConN@ types. -- -- Note that this is only defined on GHC 8.6 or later. Prior to GHC 8.6, -- 'TyCon1' /et al./ were defined as separate data types. #if __GLASGOW_HASKELL__ >= 810 type TyCon :: (k1 -> k2) -> unmatchable_fun #endif data family TyCon :: (k1 -> k2) -> unmatchable_fun -- That unmatchable_fun should really be a function of k1 and k2, -- but GHC 8.4 doesn't support type family calls in the result kind -- of a data family. It should. See GHC#14645. -- The result kind of this is also a bit wrong; it should line -- up with unmatchable_fun above. However, we can't do that -- because GHC is too stupid to remember that f's kind can't -- have more than one argument when kind-checking the RHS of -- the second equation. Note that this infelicity is independent -- of the problem in the kind of TyCon. There is no GHC ticket -- here because dealing with inequality like this is hard, and -- I (Richard) wasn't sure what concrete value the ticket would -- have, given that we don't know how to begin fixing it. -- | An \"internal\" definition used primary in the 'Apply' instance for -- 'TyCon'. -- -- Note that this only defined on GHC 8.6 or later. #if __GLASGOW_HASKELL__ >= 810 type ApplyTyCon :: (k1 -> k2) -> (k1 ~> unmatchable_fun) #endif type family ApplyTyCon :: (k1 -> k2) -> (k1 ~> unmatchable_fun) where #if __GLASGOW_HASKELL__ >= 808 ApplyTyCon @k1 @(k2 -> k3) @unmatchable_fun = ApplyTyConAux2 ApplyTyCon @k1 @k2 @k2 = ApplyTyConAux1 #else ApplyTyCon = (ApplyTyConAux2 :: (k1 -> k2 -> k3) -> (k1 ~> unmatchable_fun)) ApplyTyCon = (ApplyTyConAux1 :: (k1 -> k2) -> (k1 ~> k2)) #endif -- Upon first glance, the definition of ApplyTyCon (as well as the -- corresponding Apply instance for TyCon) seems a little indirect. One might -- wonder why these aren't defined like so: -- -- type family ApplyTyCon (f :: k1 -> k2) (x :: k1) :: k3 where -- ApplyTyCon (f :: k1 -> k2 -> k3) x = TyCon (f x) -- ApplyTyCon f x = f x -- -- type instance Apply (TyCon f) x = ApplyTyCon f x -- -- This also works, but it requires that ApplyTyCon always be applied to a -- minimum of two arguments. In particular, this rules out a trick that we use -- elsewhere in the library to write SingI instances for different TyCons, -- which relies on partial applications of ApplyTyCon: -- -- instance forall k1 k2 (f :: k1 -> k2). -- ( forall a. SingI a => SingI (f a) -- , (ApplyTyCon :: (k1 -> k2) -> (k1 ~> k2)) ~ ApplyTyConAux1 -- ) => SingI (TyCon1 f) where type instance Apply (TyCon f) x = ApplyTyCon f @@ x -- | An \"internal\" defunctionalization symbol used primarily in the -- definition of 'ApplyTyCon', as well as the 'SingI' instances for 'TyCon1', -- 'TyCon2', etc. -- -- Note that this is only defined on GHC 8.6 or later. #if __GLASGOW_HASKELL__ >= 810 type ApplyTyConAux1 :: (k1 -> k2) -> (k1 ~> k2) #endif data ApplyTyConAux1 :: (k1 -> k2) -> (k1 ~> k2) -- | An \"internal\" defunctionalization symbol used primarily in the -- definition of 'ApplyTyCon'. -- -- Note that this is only defined on GHC 8.6 or later. #if __GLASGOW_HASKELL__ >= 810 type ApplyTyConAux2 :: (k1 -> k2 -> k3) -> (k1 ~> unmatchable_fun) #endif data ApplyTyConAux2 :: (k1 -> k2 -> k3) -> (k1 ~> unmatchable_fun) type instance Apply (ApplyTyConAux1 f) x = f x type instance Apply (ApplyTyConAux2 f) x = TyCon (f x) #if __GLASGOW_HASKELL__ >= 810 type TyCon1 :: (k1 -> k2) -> (k1 ~> k2) type TyCon2 :: (k1 -> k2 -> k3) -> (k1 ~> k2 ~> k3) type TyCon3 :: (k1 -> k2 -> k3 -> k4) -> (k1 ~> k2 ~> k3 ~> k4) type TyCon4 :: (k1 -> k2 -> k3 -> k4 -> k5) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5) type TyCon5 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6) type TyCon6 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7) type TyCon7 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8) type TyCon8 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8 -> k9) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8 ~> k9) #endif -- | Wrapper for converting the normal type-level arrow into a '~>'. -- For example, given: -- -- > data Nat = Zero | Succ Nat -- > type family Map (a :: a ~> b) (a :: [a]) :: [b] -- > Map f '[] = '[] -- > Map f (x ': xs) = Apply f x ': Map f xs -- -- We can write: -- -- > Map (TyCon1 Succ) [Zero, Succ Zero] type TyCon1 = (TyCon :: (k1 -> k2) -> (k1 ~> k2)) -- | Similar to 'TyCon1', but for two-parameter type constructors. type TyCon2 = (TyCon :: (k1 -> k2 -> k3) -> (k1 ~> k2 ~> k3)) type TyCon3 = (TyCon :: (k1 -> k2 -> k3 -> k4) -> (k1 ~> k2 ~> k3 ~> k4)) type TyCon4 = (TyCon :: (k1 -> k2 -> k3 -> k4 -> k5) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5)) type TyCon5 = (TyCon :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6)) type TyCon6 = (TyCon :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7)) type TyCon7 = (TyCon :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8)) type TyCon8 = (TyCon :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8 -> k9) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8 ~> k9)) #else -- | Wrapper for converting the normal type-level arrow into a '~>'. -- For example, given: -- -- > data Nat = Zero | Succ Nat -- > type family Map (a :: a ~> b) (a :: [a]) :: [b] -- > Map f '[] = '[] -- > Map f (x ': xs) = Apply f x ': Map f xs -- -- We can write: -- -- > Map (TyCon1 Succ) [Zero, Succ Zero] data TyCon1 :: (k1 -> k2) -> (k1 ~> k2) -- | Similar to 'TyCon1', but for two-parameter type constructors. data TyCon2 :: (k1 -> k2 -> k3) -> (k1 ~> k2 ~> k3) data TyCon3 :: (k1 -> k2 -> k3 -> k4) -> (k1 ~> k2 ~> k3 ~> k4) data TyCon4 :: (k1 -> k2 -> k3 -> k4 -> k5) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5) data TyCon5 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6) data TyCon6 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7) data TyCon7 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8) data TyCon8 :: (k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8 -> k9) -> (k1 ~> k2 ~> k3 ~> k4 ~> k5 ~> k6 ~> k7 ~> k8 ~> k9) type instance Apply (TyCon1 f) x = f x type instance Apply (TyCon2 f) x = TyCon1 (f x) type instance Apply (TyCon3 f) x = TyCon2 (f x) type instance Apply (TyCon4 f) x = TyCon3 (f x) type instance Apply (TyCon5 f) x = TyCon4 (f x) type instance Apply (TyCon6 f) x = TyCon5 (f x) type instance Apply (TyCon7 f) x = TyCon6 (f x) type instance Apply (TyCon8 f) x = TyCon7 (f x) #endif ---------------------------------------------------------------------- ---- Defunctionalized Sing instance and utilities -------------------- ---------------------------------------------------------------------- #if __GLASGOW_HASKELL__ >= 810 type SLambda :: (k1 ~> k2) -> Type #endif newtype SLambda (f :: k1 ~> k2) = SLambda { applySing :: forall t. Sing t -> Sing (f @@ t) } type instance Sing = SLambda -- | An infix synonym for `applySing` (@@) :: forall k1 k2 (f :: k1 ~> k2) (t :: k1). Sing f -> Sing t -> Sing (f @@ t) (@@) f = applySing f -- | Note that this instance's 'toSing' implementation crucially relies on the fact -- that the 'SingKind' instances for 'k1' and 'k2' both satisfy the 'SingKind' laws. -- If they don't, 'toSing' might produce strange results! instance (SingKind k1, SingKind k2) => SingKind (k1 ~> k2) where type Demote (k1 ~> k2) = Demote k1 -> Demote k2 fromSing sFun x = withSomeSing x (fromSing . applySing sFun) toSing f = SomeSing slam where -- Here, we are essentially "manufacturing" a type-level version of the -- function f. As long as k1 and k2 obey the SingKind laws, this is a -- perfectly fine thing to do, since the computational content of Sing f -- will be isomorphic to that of the function f. slam :: forall (f :: k1 ~> k2). Sing f slam = singFun1 @f lam where -- Here's the tricky part. We need to demote the argument Sing, apply the -- term-level function f to it, and promote it back to a Sing. However, -- we don't have a way to convince the typechecker that for all argument -- types t, f @@ t should be the same thing as res, which motivates the -- use of unsafeCoerce. lam :: forall (t :: k1). Sing t -> Sing (f @@ t) lam x = withSomeSing (f (fromSing x)) (\(r :: Sing res) -> unsafeCoerce r) #if __GLASGOW_HASKELL__ >= 810 type SingFunction1 :: (a1 ~> b) -> Type type SingFunction2 :: (a1 ~> a2 ~> b) -> Type type SingFunction3 :: (a1 ~> a2 ~> a3 ~> b) -> Type type SingFunction4 :: (a1 ~> a2 ~> a3 ~> a4 ~> b) -> Type type SingFunction5 :: (a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> b) -> Type type SingFunction6 :: (a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> b) -> Type type SingFunction7 :: (a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> a7 ~> b) -> Type type SingFunction8 :: (a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> a7 ~> a8 ~> b) -> Type #endif type SingFunction1 (f :: a1 ~> b) = forall t. Sing t -> Sing (f @@ t) -- | Use this function when passing a function on singletons as -- a higher-order function. You will need visible type application -- to get this to work. For example: -- -- > falses = sMap (singFun1 @NotSym0 sNot) -- > (STrue `SCons` STrue `SCons` SNil) -- -- There are a family of @singFun...@ functions, keyed by the number -- of parameters of the function. singFun1 :: forall f. SingFunction1 f -> Sing f singFun1 f = SLambda f type SingFunction2 (f :: a1 ~> a2 ~> b) = forall t1 t2. Sing t1 -> Sing t2 -> Sing (f @@ t1 @@ t2) singFun2 :: forall f. SingFunction2 f -> Sing f singFun2 f = SLambda (\x -> singFun1 (f x)) type SingFunction3 (f :: a1 ~> a2 ~> a3 ~> b) = forall t1 t2 t3. Sing t1 -> Sing t2 -> Sing t3 -> Sing (f @@ t1 @@ t2 @@ t3) singFun3 :: forall f. SingFunction3 f -> Sing f singFun3 f = SLambda (\x -> singFun2 (f x)) type SingFunction4 (f :: a1 ~> a2 ~> a3 ~> a4 ~> b) = forall t1 t2 t3 t4. Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing (f @@ t1 @@ t2 @@ t3 @@ t4) singFun4 :: forall f. SingFunction4 f -> Sing f singFun4 f = SLambda (\x -> singFun3 (f x)) type SingFunction5 (f :: a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> b) = forall t1 t2 t3 t4 t5. Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing (f @@ t1 @@ t2 @@ t3 @@ t4 @@ t5) singFun5 :: forall f. SingFunction5 f -> Sing f singFun5 f = SLambda (\x -> singFun4 (f x)) type SingFunction6 (f :: a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> b) = forall t1 t2 t3 t4 t5 t6. Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing t6 -> Sing (f @@ t1 @@ t2 @@ t3 @@ t4 @@ t5 @@ t6) singFun6 :: forall f. SingFunction6 f -> Sing f singFun6 f = SLambda (\x -> singFun5 (f x)) type SingFunction7 (f :: a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> a7 ~> b) = forall t1 t2 t3 t4 t5 t6 t7. Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing t6 -> Sing t7 -> Sing (f @@ t1 @@ t2 @@ t3 @@ t4 @@ t5 @@ t6 @@ t7) singFun7 :: forall f. SingFunction7 f -> Sing f singFun7 f = SLambda (\x -> singFun6 (f x)) type SingFunction8 (f :: a1 ~> a2 ~> a3 ~> a4 ~> a5 ~> a6 ~> a7 ~> a8 ~> b) = forall t1 t2 t3 t4 t5 t6 t7 t8. Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing t6 -> Sing t7 -> Sing t8 -> Sing (f @@ t1 @@ t2 @@ t3 @@ t4 @@ t5 @@ t6 @@ t7 @@ t8) singFun8 :: forall f. SingFunction8 f -> Sing f singFun8 f = SLambda (\x -> singFun7 (f x)) -- | This is the inverse of 'singFun1', and likewise for the other -- @unSingFun...@ functions. unSingFun1 :: forall f. Sing f -> SingFunction1 f unSingFun1 sf = applySing sf unSingFun2 :: forall f. Sing f -> SingFunction2 f unSingFun2 sf x = unSingFun1 (sf @@ x) unSingFun3 :: forall f. Sing f -> SingFunction3 f unSingFun3 sf x = unSingFun2 (sf @@ x) unSingFun4 :: forall f. Sing f -> SingFunction4 f unSingFun4 sf x = unSingFun3 (sf @@ x) unSingFun5 :: forall f. Sing f -> SingFunction5 f unSingFun5 sf x = unSingFun4 (sf @@ x) unSingFun6 :: forall f. Sing f -> SingFunction6 f unSingFun6 sf x = unSingFun5 (sf @@ x) unSingFun7 :: forall f. Sing f -> SingFunction7 f unSingFun7 sf x = unSingFun6 (sf @@ x) unSingFun8 :: forall f. Sing f -> SingFunction8 f unSingFun8 sf x = unSingFun7 (sf @@ x) #if __GLASGOW_HASKELL__ >= 802 {-# COMPLETE SLambda2 #-} {-# COMPLETE SLambda3 #-} {-# COMPLETE SLambda4 #-} {-# COMPLETE SLambda5 #-} {-# COMPLETE SLambda6 #-} {-# COMPLETE SLambda7 #-} {-# COMPLETE SLambda8 #-} #endif pattern SLambda2 :: forall f. SingFunction2 f -> Sing f pattern SLambda2 {applySing2} <- (unSingFun2 -> applySing2) where SLambda2 lam2 = singFun2 lam2 pattern SLambda3 :: forall f. SingFunction3 f -> Sing f pattern SLambda3 {applySing3} <- (unSingFun3 -> applySing3) where SLambda3 lam3 = singFun3 lam3 pattern SLambda4 :: forall f. SingFunction4 f -> Sing f pattern SLambda4 {applySing4} <- (unSingFun4 -> applySing4) where SLambda4 lam4 = singFun4 lam4 pattern SLambda5 :: forall f. SingFunction5 f -> Sing f pattern SLambda5 {applySing5} <- (unSingFun5 -> applySing5) where SLambda5 lam5 = singFun5 lam5 pattern SLambda6 :: forall f. SingFunction6 f -> Sing f pattern SLambda6 {applySing6} <- (unSingFun6 -> applySing6) where SLambda6 lam6 = singFun6 lam6 pattern SLambda7 :: forall f. SingFunction7 f -> Sing f pattern SLambda7 {applySing7} <- (unSingFun7 -> applySing7) where SLambda7 lam7 = singFun7 lam7 pattern SLambda8 :: forall f. SingFunction8 f -> Sing f pattern SLambda8 {applySing8} <- (unSingFun8 -> applySing8) where SLambda8 lam8 = singFun8 lam8 ---------------------------------------------------------------------- ---- Convenience ----------------------------------------------------- ---------------------------------------------------------------------- -- | Convenience function for creating a context with an implicit singleton -- available. withSingI :: Sing n -> (SingI n => r) -> r withSingI sn r = case singInstance sn of SingInstance -> r -- | Convert a normal datatype (like 'Bool') to a singleton for that datatype, -- passing it into a continuation. withSomeSing :: forall k r . SingKind k => Demote k -- ^ The original datatype -> (forall (a :: k). Sing a -> r) -- ^ Function expecting a singleton -> r withSomeSing x f = case toSing x of SomeSing x' -> f x' -- | Convert a group of 'SingI1' and 'SingI' constraints (representing a -- function to apply and its argument, respectively) into a single 'SingI' -- constraint representing the application. You will likely need the -- @ScopedTypeVariables@ extension to use this method the way you want. usingSingI1 :: forall f x r. (SingI1 f, SingI x) => (SingI (f x) => r) -> r usingSingI1 k = withSingI (sing1 @f @x) k -- | Convert a group of 'SingI2' and 'SingI' constraints (representing a -- function to apply and its arguments, respectively) into a single 'SingI' -- constraint representing the application. You will likely need the -- @ScopedTypeVariables@ extension to use this method the way you want. usingSingI2 :: forall f x y r. (SingI2 f, SingI x, SingI y) => (SingI (f x y) => r) -> r usingSingI2 k = withSingI (sing2 @f @x @y) k -- | A convenience function useful when we need to name a singleton value -- multiple times. Without this function, each use of 'sing' could potentially -- refer to a different singleton, and one has to use type signatures (often -- with @ScopedTypeVariables@) to ensure that they are the same. withSing :: SingI a => (Sing a -> b) -> b withSing f = f sing -- | A convenience function useful when we need to name a singleton value for a -- unary type constructor multiple times. Without this function, each use of -- 'sing1' could potentially refer to a different singleton, and one has to use -- type signatures (often with @ScopedTypeVariables@) to ensure that they are -- the same. withSing1 :: (SingI1 f, SingI x) => (Sing (f x) -> b) -> b withSing1 f = f sing1 -- | A convenience function useful when we need to name a singleton value for a -- binary type constructor multiple times. Without this function, each use of -- 'sing1' could potentially refer to a different singleton, and one has to use -- type signatures (often with @ScopedTypeVariables@) to ensure that they are -- the same. withSing2 :: (SingI2 f, SingI x, SingI y) => (Sing (f x y) -> b) -> b withSing2 f = f sing2 -- | A convenience function that names a singleton satisfying a certain -- property. If the singleton does not satisfy the property, then the function -- returns 'Nothing'. The property is expressed in terms of the underlying -- representation of the singleton. singThat :: forall k (a :: k). (SingKind k, SingI a) => (Demote k -> Bool) -> Maybe (Sing a) singThat p = withSing $ \x -> if p (fromSing x) then Just x else Nothing -- | A convenience function that names a singleton for a unary type constructor -- satisfying a certain property. If the singleton does not satisfy the -- property, then the function returns 'Nothing'. The property is expressed in -- terms of the underlying representation of the singleton. singThat1 :: forall k1 k2 (f :: k1 -> k2) (x :: k1). (SingKind k2, SingI1 f, SingI x) => (Demote k2 -> Bool) -> Maybe (Sing (f x)) singThat1 p = withSing1 $ \x -> if p (fromSing x) then Just x else Nothing -- | A convenience function that names a singleton for a binary type constructor -- satisfying a certain property. If the singleton does not satisfy the -- property, then the function returns 'Nothing'. The property is expressed in -- terms of the underlying representation of the singleton. singThat2 :: forall k1 k2 k3 (f :: k1 -> k2 -> k3) (x :: k1) (y :: k2). (SingKind k3, SingI2 f, SingI x, SingI y) => (Demote k3 -> Bool) -> Maybe (Sing (f x y)) singThat2 p = withSing2 $ \x -> if p (fromSing x) then Just x else Nothing -- | Allows creation of a singleton when a proxy is at hand. singByProxy :: SingI a => proxy a -> Sing a singByProxy _ = sing -- | Allows creation of a singleton for a unary type constructor when a proxy -- is at hand. singByProxy1 :: (SingI1 f, SingI x) => proxy (f x) -> Sing (f x) singByProxy1 _ = sing1 -- | Allows creation of a singleton for a binary type constructor when a proxy -- is at hand. singByProxy2 :: (SingI2 f, SingI x, SingI y) => proxy (f x y) -> Sing (f x y) singByProxy2 _ = sing2 -- | Allows creation of a singleton when a @proxy#@ is at hand. singByProxy# :: SingI a => Proxy# a -> Sing a singByProxy# _ = sing -- | Allows creation of a singleton for a unary type constructor when a -- @proxy#@ is at hand. singByProxy1# :: (SingI1 f, SingI x) => Proxy# (f x) -> Sing (f x) singByProxy1# _ = sing1 -- | Allows creation of a singleton for a binary type constructor when a -- @proxy#@ is at hand. singByProxy2# :: (SingI2 f, SingI x, SingI y) => Proxy# (f x y) -> Sing (f x y) singByProxy2# _ = sing2 -- | A convenience function that takes a type as input and demotes it to its -- value-level counterpart as output. This uses 'SingKind' and 'SingI' behind -- the scenes, so @'demote' = 'fromSing' 'sing'@. -- -- This function is intended to be used with @TypeApplications@. For example: -- -- >>> demote @True -- True -- -- >>> demote @(Nothing :: Maybe Ordering) -- Nothing -- -- >>> demote @(Just EQ) -- Just EQ -- -- >>> demote @'(True,EQ) -- (True,EQ) demote :: #if __GLASGOW_HASKELL__ >= 900 forall {k} (a :: k). (SingKind k, SingI a) => Demote k #else forall a. (SingKind (KindOf a), SingI a) => Demote (KindOf a) #endif demote = fromSing (sing @a) -- | A convenience function that takes a unary type constructor and its -- argument as input, applies them, and demotes the result to its -- value-level counterpart as output. This uses 'SingKind', 'SingI1', and -- 'SingI' behind the scenes, so @'demote1' = 'fromSing' 'sing1'@. -- -- This function is intended to be used with @TypeApplications@. For example: -- -- >>> demote1 @Just @EQ -- Just EQ -- -- >>> demote1 @('(,) True) @EQ -- (True,EQ) demote1 :: #if __GLASGOW_HASKELL__ >= 900 forall {k1} {k2} (f :: k1 -> k2) (x :: k1). (SingKind k2, SingI1 f, SingI x) => Demote k2 #else forall f x. (SingKind (KindOf (f x)), SingI1 f, SingI x) => Demote (KindOf (f x)) #endif demote1 = fromSing (sing1 @f @x) -- | A convenience function that takes a binary type constructor and its -- arguments as input, applies them, and demotes the result to its -- value-level counterpart as output. This uses 'SingKind', 'SingI2', and -- 'SingI' behind the scenes, so @'demote2' = 'fromSing' 'sing2'@. -- -- This function is intended to be used with @TypeApplications@. For example: -- -- >>> demote2 @'(,) @True @EQ -- (True,EQ) demote2 :: #if __GLASGOW_HASKELL__ >= 900 forall {k1} {k2} {k3} (f :: k1 -> k2 -> k3) (x :: k1) (y :: k2). (SingKind k3, SingI2 f, SingI x, SingI y) => Demote k3 #else forall f x y. (SingKind (KindOf (f x y)), SingI2 f, SingI x, SingI y) => Demote (KindOf (f x y)) #endif demote2 = fromSing (sing2 @f @x @y) ---------------------------------------------------------------------- ---- SingI TyCon{N} instances ---------------------------------------- ---------------------------------------------------------------------- #if __GLASGOW_HASKELL__ >= 806 instance forall k1 kr (f :: k1 -> kr). ( forall a. SingI a => SingI (f a) , (ApplyTyCon :: (k1 -> kr) -> (k1 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon1 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 kr (f :: k1 -> k2 -> kr). ( forall a b. (SingI a, SingI b) => SingI (f a b) , (ApplyTyCon :: (k2 -> kr) -> (k2 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon2 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 kr (f :: k1 -> k2 -> k3 -> kr). ( forall a b c. (SingI a, SingI b, SingI c) => SingI (f a b c) , (ApplyTyCon :: (k3 -> kr) -> (k3 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon3 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 k4 kr (f :: k1 -> k2 -> k3 -> k4 -> kr). ( forall a b c d. (SingI a, SingI b, SingI c, SingI d) => SingI (f a b c d) , (ApplyTyCon :: (k4 -> kr) -> (k4 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon4 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 k4 k5 kr (f :: k1 -> k2 -> k3 -> k4 -> k5 -> kr). ( forall a b c d e. (SingI a, SingI b, SingI c, SingI d, SingI e) => SingI (f a b c d e) , (ApplyTyCon :: (k5 -> kr) -> (k5 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon5 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 k4 k5 k6 kr (f :: k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> kr). ( forall a b c d e f'. (SingI a, SingI b, SingI c, SingI d, SingI e, SingI f') => SingI (f a b c d e f') , (ApplyTyCon :: (k6 -> kr) -> (k6 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon6 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 k4 k5 k6 k7 kr (f :: k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> kr). ( forall a b c d e f' g. (SingI a, SingI b, SingI c, SingI d, SingI e, SingI f', SingI g) => SingI (f a b c d e f' g) , (ApplyTyCon :: (k7 -> kr) -> (k7 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon7 f) where sing = singFun1 (`withSingI` sing) instance forall k1 k2 k3 k4 k5 k6 k7 k8 kr (f :: k1 -> k2 -> k3 -> k4 -> k5 -> k6 -> k7 -> k8 -> kr). ( forall a b c d e f' g h. (SingI a, SingI b, SingI c, SingI d, SingI e, SingI f', SingI g, SingI h) => SingI (f a b c d e f' g h) , (ApplyTyCon :: (k8 -> kr) -> (k8 ~> kr)) ~ ApplyTyConAux1 ) => SingI (TyCon8 f) where sing = singFun1 (`withSingI` sing) #endif ---------------------------------------------------------------------- ---- Defunctionalization symbols ------------------------------------- ---------------------------------------------------------------------- -- $(genDefunSymbols [''Demote, ''SameKind, ''KindOf, ''(~>), ''Apply, ''(@@)]) -- WrapSing, UnwrapSing, and SingFunction1 et al. are not defunctionalizable -- at the moment due to GHC#9269 #if __GLASGOW_HASKELL__ >= 810 type DemoteSym0 :: Type ~> Type type DemoteSym1 :: Type -> Type #endif data DemoteSym0 :: Type ~> Type type DemoteSym1 x = Demote x type instance Apply DemoteSym0 x = Demote x ----- #if __GLASGOW_HASKELL__ >= 810 type SameKindSym0 :: forall k. k ~> k ~> Constraint type SameKindSym1 :: forall k. k -> k ~> Constraint type SameKindSym2 :: forall k. k -> k -> Constraint #endif data SameKindSym0 :: forall k. k ~> k ~> Constraint data SameKindSym1 :: forall k. k -> k ~> Constraint type SameKindSym2 (x :: k) (y :: k) = SameKind x y type instance Apply SameKindSym0 x = SameKindSym1 x type instance Apply (SameKindSym1 x) y = SameKind x y ----- #if __GLASGOW_HASKELL__ >= 810 type KindOfSym0 :: forall k. k ~> Type type KindOfSym1 :: forall k. k -> Type #endif data KindOfSym0 :: forall k. k ~> Type type KindOfSym1 (x :: k) = KindOf x type instance Apply KindOfSym0 x = KindOf x ----- infixr 0 ~>@#@$, ~>@#@$$, ~>@#@$$$ #if __GLASGOW_HASKELL__ >= 810 type (~>@#@$) :: Type ~> Type ~> Type type (~>@#@$$) :: Type -> Type ~> Type type (~>@#@$$$) :: Type -> Type -> Type #endif data (~>@#@$) :: Type ~> Type ~> Type data (~>@#@$$) :: Type -> Type ~> Type type x ~>@#@$$$ y = x ~> y type instance Apply (~>@#@$) x = (~>@#@$$) x type instance Apply ((~>@#@$$) x) y = x ~> y ----- #if __GLASGOW_HASKELL__ >= 810 type ApplySym0 :: forall a b. (a ~> b) ~> a ~> b type ApplySym1 :: forall a b. (a ~> b) -> a ~> b type ApplySym2 :: forall a b. (a ~> b) -> a -> b #endif data ApplySym0 :: forall a b. (a ~> b) ~> a ~> b data ApplySym1 :: forall a b. (a ~> b) -> a ~> b type ApplySym2 (f :: a ~> b) (x :: a) = Apply f x type instance Apply ApplySym0 f = ApplySym1 f type instance Apply (ApplySym1 f) x = Apply f x ----- infixl 9 @@@#@$, @@@#@$$, @@@#@$$$ #if __GLASGOW_HASKELL__ >= 810 type (@@@#@$) :: forall a b. (a ~> b) ~> a ~> b type (@@@#@$$) :: forall a b. (a ~> b) -> a ~> b type (@@@#@$$$) :: forall a b. (a ~> b) -> a -> b #endif data (@@@#@$) :: forall a b. (a ~> b) ~> a ~> b data (@@@#@$$) :: forall a b. (a ~> b) -> a ~> b type (f :: a ~> b) @@@#@$$$ (x :: a) = f @@ x type instance Apply (@@@#@$) f = (@@@#@$$) f type instance Apply ((@@@#@$$) f) x = f @@ x {- $SingletonsOfSingletons Aside from being a data type to hang instances off of, 'WrappedSing' has another purpose as a general-purpose mechanism for allowing one to write code that uses singletons of other singletons. For instance, suppose you had the following data type: @ data T :: Type -> Type where MkT :: forall a (x :: a). 'Sing' x -> F a -> T a @ A naïve attempt at defining a singleton for @T@ would look something like this: @ data ST :: forall a. T a -> Type where SMkT :: forall a (x :: a) (sx :: 'Sing' x) (f :: F a). 'Sing' sx -> 'Sing' f -> ST (MkT sx f) @ But there is a problem here: what exactly /is/ @'Sing' sx@? If @x@ were 'True', for instance, then @sx@ would be 'STrue', but it's not clear what @'Sing' 'STrue'@ should be. One could define @SSBool@ to be the singleton of 'SBool's, but in order to be thorough, one would have to generate a singleton for /every/ singleton type out there. Plus, it's not clear when to stop. Should we also generate @SSSBool@, @SSSSBool@, etc.? Instead, 'WrappedSing' and its singleton 'SWrappedSing' provide a way to talk about singletons of other arbitrary singletons without the need to generate a bazillion instances. For reference, here is the definition of 'SWrappedSing': @ newtype 'SWrappedSing' :: forall k (a :: k). 'WrappedSing' a -> Type where 'SWrapSing' :: forall k (a :: k) (ws :: 'WrappedSing' a). { 'sUnwrapSing' :: 'Sing' a } -> 'SWrappedSing' ws type instance 'Sing' \@('WrappedSing' a) = 'SWrappedSing' @ 'SWrappedSing' is a bit of an unusual singleton in that its field is a singleton for @'Sing' \@k@, not @'WrappedSing' \@k@. But that's exactly the point—a singleton of a singleton contains as much type information as the underlying singleton itself, so we can get away with just @'Sing' \@k@. As an example of this in action, here is how you would define the singleton for the earlier @T@ type: @ data ST :: forall a. T a -> Type where SMkT :: forall a (x :: a) (sx :: 'Sing' x) (f :: F a). 'Sing' ('WrapSing' sx) -> 'Sing' f -> ST (MkT sx f) @ With this technique, we won't need anything like @SSBool@ in order to instantiate @x@ with 'True'. Instead, the field of type @'Sing' ('WrapSing' sx)@ will simply be a newtype around 'SBool'. In general, you'll need /n/ layers of 'WrapSing' if you wish to single a singleton /n/ times. Note that this is not the only possible way to define a singleton for @T@. An alternative approach that does not make use of singletons-of-singletons is discussed at some length . Due to the technical limitations of this approach, however, we do not use it in @singletons@ at the moment, instead favoring the slightly-clunkier-but-more-reliable 'WrappedSing' approach. -} {- $SLambdaPatternSynonyms @SLambda{2...8}@ are explicitly bidirectional pattern synonyms for defunctionalized singletons (@'Sing' (f :: k '~>' k' '~>' k'')@). As __constructors__: Same as @singFun{2..8}@. For example, one can turn a binary function on singletons @sTake :: 'SingFunction2' TakeSym0@ into a defunctionalized singleton @'Sing' (TakeSym :: Nat '~>' [a] '~>' [a])@: @ >>> import Data.List.Singletons >>> :set -XTypeApplications >>> >>> :t 'SLambda2' 'SLambda2' :: 'SingFunction2' f -> 'Sing' f >>> :t 'SLambda2' \@TakeSym0 'SLambda2' :: 'SingFunction2' TakeSym0 -> 'Sing' TakeSym0 >>> :t 'SLambda2' \@TakeSym0 sTake 'SLambda2' :: 'Sing' TakeSym0 @ This is useful for functions on singletons that expect a defunctionalized singleton as an argument, such as @sZipWith :: 'SingFunction3' ZipWithSym0@: @ sZipWith :: Sing (f :: a '~>' b '~>' c) -> Sing (xs :: [a]) -> Sing (ys :: [b]) -> Sing (ZipWith f xs ys :: [c]) sZipWith ('SLambda2' \@TakeSym0 sTake) :: Sing (xs :: [Nat]) -> Sing (ys :: [[a]]) -> Sing (ZipWith TakeSym0 xs ys :: [[a]]) @ As __patterns__: Same as @unSingFun{2..8}@. Gets a binary term-level Haskell function on singletons @'Sing' (x :: k) -> 'Sing' (y :: k') -> 'Sing' (f \@\@ x \@\@ y)@ from a defunctionalised @'Sing' f@. Alternatively, as a record field accessor: @ applySing2 :: 'Sing' (f :: k '~>' k' '~>' k'') -> 'SingFunction2' f @ -}