module Data.Singletons.Prelude.Base (
Foldr, sFoldr, Map, sMap, (:++), (%:++), Otherwise, sOtherwise,
Id, sId, Const, sConst, (:.), (%:.), type ($), type ($!), (%$), (%$!),
Flip, sFlip, AsTypeOf, sAsTypeOf,
Seq, sSeq,
FoldrSym0, FoldrSym1, FoldrSym2, FoldrSym3,
MapSym0, MapSym1, MapSym2,
(:++$), (:++$$), (:++$$$),
OtherwiseSym0,
IdSym0, IdSym1,
ConstSym0, ConstSym1, ConstSym2,
(:.$), (:.$$), (:.$$$), (:.$$$$),
type ($$), type ($$$), type ($$$$),
type ($!$), type ($!$$), type ($!$$$),
FlipSym0, FlipSym1, FlipSym2, FlipSym3,
AsTypeOfSym0, AsTypeOfSym1, AsTypeOfSym2,
SeqSym0, SeqSym1, SeqSym2
) where
import Data.Singletons.Prelude.Instances
import Data.Singletons.Single
import Data.Singletons
import Data.Singletons.Prelude.Bool
$(singletonsOnly [d|
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr k z = go
where
go [] = z
go (y:ys) = y `k` go ys
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
(++) :: [a] -> [a] -> [a]
(++) [] ys = ys
(++) (x:xs) ys = x : xs ++ ys
infixr 5 ++
id :: a -> a
id x = x
const :: a -> b -> a
const x _ = x
(.) :: (b -> c) -> (a -> b) -> a -> c
(.) f g = \x -> f (g x)
infixr 9 .
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
asTypeOf :: a -> a -> a
asTypeOf = const
seq :: a -> b -> b
seq _ x = x
infixr 0 `seq`
|])
type family (f :: TyFun a b -> *) $ (x :: a) :: b
type instance f $ x = f @@ x
infixr 0 $
data ($$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> *
type instance Apply ($$) arg = ($$$) arg
data ($$$) :: (TyFun a b -> *) -> TyFun a b -> *
type instance Apply (($$$) f) arg = ($$$$) f arg
type ($$$$) a b = ($) a b
(%$) :: forall (f :: TyFun a b -> *) (x :: a).
Sing f -> Sing x -> Sing (($$) @@ f @@ x)
f %$ x = applySing f x
infixr 0 %$
type family (f :: TyFun a b -> *) $! (x :: a) :: b
type instance f $! x = f @@ x
infixr 0 $!
data ($!$) :: TyFun (TyFun a b -> *) (TyFun a b -> *) -> *
type instance Apply ($!$) arg = ($!$$) arg
data ($!$$) :: (TyFun a b -> *) -> TyFun a b -> *
type instance Apply (($!$$) f) arg = ($!$$$) f arg
type ($!$$$) a b = ($!) a b
(%$!) :: forall (f :: TyFun a b -> *) (x :: a).
Sing f -> Sing x -> Sing (($!$) @@ f @@ x)
f %$! x = applySing f x
infixr 0 %$!