module Numeric.Sibe.NLP
(Class,
Document(..),
accuracy,
recall,
precision,
fmeasure,
cleanText,
cleanDocuments,
removeWords,
removeStopwords,
ngram,
ngramText,
)
where
import Numeric.Sibe.Utils
import Data.List
import Debug.Trace
import Data.List.Split
import Data.Maybe
import Control.Arrow ((&&&))
import Text.Regex.PCRE
import Data.Char (isSpace, isNumber, toLower)
import NLP.Stemmer
import qualified Data.Set as Set
type Class = Int;
data Document = Document { text :: String
, c :: Class
} deriving (Eq, Show, Read)
cleanText :: String -> String
cleanText string =
let puncs = filter (`notElem` ['!', '"', '#', '$', '%', '(', ')', '.', '?']) (trim string)
spacify = foldl (\acc x -> replace x ' ' acc) puncs [',', '/', '-', '\n', '\r']
stemmed = unwords $ map (stem Porter) (words spacify)
nonumber = filter (not . isNumber) stemmed
lower = map toLower nonumber
in (unwords . words) lower
where
trim = f . f
where
f = reverse . dropWhile isSpace
replace needle replacement =
map (\c -> if c == needle then replacement else c)
cleanDocuments :: [Document] -> [Document]
cleanDocuments documents =
let cleaned = map (\(Document text c) -> Document (cleanText text) c) documents
in cleaned
removeWords :: [String] -> [Document] -> [Document]
removeWords ws documents =
map (\(Document text c) -> Document (rm ws text) c) documents
where
rm list text =
unwords $ filter (`notElem` list) (words text)
removeStopwords :: Int -> [Document] -> [Document]
removeStopwords i documents =
let wc = wordCounts (concatDocs documents)
wlist = sortBy (\(_, a) (_, b) -> b `compare` a) wc
stopwords = map fst (take i wlist)
in removeWords stopwords documents
where
vocabulary x = ordNub (words x)
countWordInDoc d w = genericLength (filter (==w) d)
wordCounts x =
let voc = vocabulary x
in zip voc $ map (countWordInDoc (words x)) voc
concatDocs = concatMap (\(Document text _) -> text ++ " ")
accuracy :: [(Int, (Int, Double))] -> Double
accuracy results =
let pairs = map (\(a, b) -> (a, fst b)) results
correct = filter (uncurry (==)) pairs
in genericLength correct / genericLength results
recall :: [(Int, (Int, Double))] -> Double
recall results =
let classes = ordNub (map fst results)
s = sum (map rec classes) / genericLength classes
in s
where
rec a =
let t = genericLength $ filter (\(c, (r, _)) -> c == r && c == a) results
y = genericLength $ filter (\(c, (r, _)) -> c == a) results
in t / y
precision :: [(Int, (Int, Double))] -> Double
precision results =
let classes = ordNub (map fst results)
s = sum (map prec classes) / genericLength classes
in s
where
prec a =
let t = genericLength $ filter (\(c, (r, _)) -> c == r && c == a) results
y = genericLength $ filter (\(c, (r, _)) -> r == a) results
in
if y == 0
then 0
else t / y
fmeasure :: [(Int, (Int, Double))] -> Double
fmeasure results =
let r = recall results
p = precision results
in (2 * p * r) / (p + r)
ngram :: Int -> [Document] -> [Document]
ngram n documents =
map (\(Document text c) -> Document (ngramText n text) c) documents
ngramText :: Int -> String -> String
ngramText n text =
let ws = words text
pairs = zip [0..] ws
grams = map (\(i, w) -> concat . intersperse "_" $ w:((take (n 1) . drop (i+1)) ws)) pairs
in unwords ("<b>_":grams)