{-# LANGUAGE DataKinds #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- A tropical semiring is an extension of another totally ordered -- semiring with the operations of minimum or maximum as addition. -- The extended semiring is given positive or negative infinity as -- its 'zero' element, so that the following hold: -- -- @ --'plus' 'Infinity' y = y --'plus' x 'Infinity' = x@ -- -- -- i.e., In the max-plus tropical semiring (where 'plus' is 'max'), -- 'Infinity' unifies with the typical interpretation of negative infinity, -- and thus it is the identity for the maximum, and in the min-plus tropical -- semiring (where 'plus' is 'min'), 'Infinity' unifies with the typical -- interpretation of positive infinity, and thus it is the identity for the minimum. -- ----------------------------------------------------------------------------- module Data.Semiring.Tropical ( Tropical(Infinity,Tropical) , Extrema(Minima,Maxima) , Extremum(extremum) , EProxy(EProxy) ) where import Data.Data (Data) import Data.Semiring (Semiring(..)) import Data.Star (Star(..)) import Data.Typeable (Typeable) -- done for haddocks, to make sure -Wall works import qualified Data.Monoid as Monoid -- | On older GHCs, 'Data.Proxy.Proxy' is not polykinded, so we provide our own proxy type for 'Extrema'. -- This turns out not to be a problem, since 'Extremum' is a closed typeclass. data EProxy (e :: Extrema) = EProxy -- | A datatype to be used at the kind-level. Its only -- purpose is to decide the ordering for the tropical -- semiring in a type-safe way. data Extrema = Minima | Maxima -- | The 'Extremum' typeclass exists for us to match on -- the kind-level 'Extrema', so that we can recover -- which ordering to use in the `Semiring` instance -- for 'Tropical`. class Extremum (e :: Extrema) where -- unfortunately this has to take a `Proxy` because -- we don't have visual type applications before GHC 8.0 extremum :: EProxy e -> Extrema instance Extremum 'Minima where extremum _ = Minima {-# INLINE extremum #-} -- just to be safe instance Extremum 'Maxima where extremum _ = Maxima {-# INLINE extremum #-} -- just to be safe -- | The tropical semiring. -- -- @'Tropical' ''Minima' a@ is equivalent to the semiring -- \( (a \cup \{+\infty\}, \oplus, \otimes) \), where \( x \oplus y = min\{x,y\}\) and \(x \otimes y = x + y\). -- -- @'Tropical' ''Maxima' a@ is equivalent to the semiring -- \( (a \cup \{-\infty\}, \oplus, \otimes) \), where \( x \oplus y = max\{x,y\}\) and \(x \otimes y = x + y\). -- -- In literature, the 'Semiring' instance of the 'Tropical' semiring lifts -- the underlying semiring's additive structure. One might ask why this lifting doesn't -- instead witness a 'Monoid.Monoid', since we only lift 'zero' and 'plus' - the reason is -- that usually the additive structure of a semiring is monotonic, i.e. -- @a '+' ('min' b c) == 'min' (a '+' b) (a '+' c)@, but in general this is not true. -- For example, lifting 'Monoid.Product' 'Word' into 'Tropical' is lawful, -- but 'Monoid.Product' 'Int' is not, lacking distributivity: @(-1) '*' ('min' 0 1) '/=' 'min' ((-1) '*' 0) ((-1) '*' 1)@. -- So, we deviate from literature and instead -- witness the lifting of a 'Monoid.Monoid', so the user must take care to ensure -- that their implementation of 'mappend' is monotonic. data Tropical (e :: Extrema) a = Infinity | Tropical a deriving ( Eq , Show , Read , Typeable , Data ) instance forall e a. (Ord a, Extremum e) => Ord (Tropical e a) where compare Infinity Infinity = EQ compare Infinity _ = case extremum (EProxy :: EProxy e) of Minima -> GT Maxima -> LT compare _ Infinity = case extremum (EProxy :: EProxy e) of Minima -> LT Maxima -> GT compare (Tropical x) (Tropical y) = compare x y instance forall e a. (Ord a, Monoid.Monoid a, Extremum e) => Semiring (Tropical e a) where zero = Infinity one = Tropical Monoid.mempty plus Infinity y = y plus x Infinity = x plus (Tropical x) (Tropical y) = Tropical ( case extremum (EProxy :: EProxy e) of Minima -> min x y Maxima -> max x y ) times Infinity _ = Infinity times _ Infinity = Infinity times (Tropical x) (Tropical y) = Tropical (Monoid.mappend x y) fromNatural 0 = zero fromNatural _ = one instance forall e a. (Ord a, Monoid.Monoid a, Extremum e) => Star (Tropical e a) where star _ = one