#ifndef MIN_VERSION_semigroups
#define MIN_VERSION_semigroups(x,y,z) 1
#endif
#if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL <= 706 && defined(MIN_VERSION_comonad) && !(MIN_VERSION_comonad(3,0,3))
#endif
#if __GLASGOW_HASKELL__ >= 708 && __GLASGOW_HASKELL__ < 710
#endif
module Data.Functor.Bind.Class (
Apply(..)
, WrappedApplicative(..)
, MaybeApply(..)
, Bind(..)
, apDefault
, returning
, Biapply(..)
) where
import Data.Semigroup
import Control.Applicative
import Control.Applicative.Backwards
import Control.Applicative.Lift
import Control.Arrow
import Control.Category
import Control.Monad (ap)
import Control.Monad.Trans.Cont
import Control.Monad.Trans.Error
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.Reader
import Control.Monad.Trans.List
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Biapplicative
import Data.Bifunctor.Biff
import Data.Bifunctor.Clown
import Data.Bifunctor.Flip
import Data.Bifunctor.Joker
import Data.Bifunctor.Join
import Data.Bifunctor.Product as Bifunctor
import Data.Bifunctor.Tannen
import Data.Bifunctor.Wrapped
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Identity
import Data.Functor.Product as Functor
import Data.Functor.Reverse
import Data.Functor.Extend
import Data.List.NonEmpty
import Data.Orphans ()
import Prelude hiding (id, (.))
#ifdef MIN_VERSION_containers
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import Data.Map (Map)
import Data.Sequence (Seq)
import Data.Tree (Tree)
#endif
#ifdef MIN_VERSION_tagged
import Data.Tagged
#endif
#if defined(MIN_VERSION_tagged) || MIN_VERSION_base(4,7,0)
import Data.Proxy
#endif
#ifdef MIN_VERSION_comonad
import Control.Comonad
import Control.Comonad.Trans.Env
import Control.Comonad.Trans.Store
import Control.Comonad.Trans.Traced
#else
($>) :: Functor f => f a -> b -> f b
($>) = flip (<$)
#endif
infixl 1 >>-
infixl 4 <.>, <., .>
class Functor f => Apply f where
(<.>) :: f (a -> b) -> f a -> f b
(.>) :: f a -> f b -> f b
a .> b = const id <$> a <.> b
(<.) :: f a -> f b -> f a
a <. b = const <$> a <.> b
#ifdef MIN_VERSION_tagged
instance Apply (Tagged a) where
(<.>) = (<*>)
(<.) = (<*)
(.>) = (*>)
#endif
#if defined(MIN_VERSION_tagged) || MIN_VERSION_base(4,7,0)
instance Apply Proxy where
(<.>) = (<*>)
(<.) = (<*)
(.>) = (*>)
#endif
instance Apply f => Apply (Backwards f) where
Backwards f <.> Backwards a = Backwards (flip id <$> a <.> f)
instance (Apply f, Apply g) => Apply (Compose f g) where
Compose f <.> Compose x = Compose ((<.>) <$> f <.> x)
instance Semigroup f => Apply (Constant f) where
Constant a <.> Constant b = Constant (a <> b)
Constant a <. Constant b = Constant (a <> b)
Constant a .> Constant b = Constant (a <> b)
instance Apply f => Apply (Lift f) where
Pure f <.> Pure x = Pure (f x)
Pure f <.> Other y = Other (f <$> y)
Other f <.> Pure x = Other (($ x) <$> f)
Other f <.> Other y = Other (f <.> y)
instance (Apply f, Apply g) => Apply (Functor.Product f g) where
Functor.Pair f g <.> Functor.Pair x y = Functor.Pair (f <.> x) (g <.> y)
instance Apply f => Apply (Reverse f) where
Reverse a <.> Reverse b = Reverse (a <.> b)
instance Semigroup m => Apply ((,)m) where
(m, f) <.> (n, a) = (m <> n, f a)
(m, a) <. (n, _) = (m <> n, a)
(m, _) .> (n, b) = (m <> n, b)
instance Apply NonEmpty where
(<.>) = ap
instance Apply (Either a) where
Left a <.> _ = Left a
Right _ <.> Left a = Left a
Right f <.> Right b = Right (f b)
Left a <. _ = Left a
Right _ <. Left a = Left a
Right a <. Right _ = Right a
Left a .> _ = Left a
Right _ .> Left a = Left a
Right _ .> Right b = Right b
instance Semigroup m => Apply (Const m) where
Const m <.> Const n = Const (m <> n)
Const m <. Const n = Const (m <> n)
Const m .> Const n = Const (m <> n)
instance Apply ((->)m) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply ZipList where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply [] where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply IO where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Maybe where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Option where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply Identity where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Apply w => Apply (IdentityT w) where
IdentityT wa <.> IdentityT wb = IdentityT (wa <.> wb)
instance Monad m => Apply (WrappedMonad m) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
instance Arrow a => Apply (WrappedArrow a b) where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
#ifdef MIN_VERSION_containers
instance Ord k => Apply (Map k) where
(<.>) = Map.intersectionWith id
(<. ) = Map.intersectionWith const
( .>) = Map.intersectionWith (const id)
instance Apply IntMap where
(<.>) = IntMap.intersectionWith id
(<. ) = IntMap.intersectionWith const
( .>) = IntMap.intersectionWith (const id)
instance Apply Seq where
(<.>) = ap
instance Apply Tree where
(<.>) = (<*>)
(<. ) = (<* )
( .>) = ( *>)
#endif
instance (Functor m, Monad m) => Apply (MaybeT m) where
(<.>) = apDefault
instance (Functor m, Monad m) => Apply (ErrorT e m) where
(<.>) = apDefault
instance (Functor m, Monad m) => Apply (ExceptT e m) where
(<.>) = apDefault
instance Apply m => Apply (ReaderT e m) where
ReaderT f <.> ReaderT a = ReaderT $ \e -> f e <.> a e
instance Apply m => Apply (ListT m) where
ListT f <.> ListT a = ListT $ (<.>) <$> f <.> a
instance (Apply m, Semigroup w) => Apply (Strict.WriterT w m) where
Strict.WriterT f <.> Strict.WriterT a = Strict.WriterT $ flap <$> f <.> a where
flap (x,m) (y,n) = (x y, m <> n)
instance (Apply m, Semigroup w) => Apply (Lazy.WriterT w m) where
Lazy.WriterT f <.> Lazy.WriterT a = Lazy.WriterT $ flap <$> f <.> a where
flap ~(x,m) ~(y,n) = (x y, m <> n)
instance Bind m => Apply (Strict.StateT s m) where
(<.>) = apDefault
instance Bind m => Apply (Lazy.StateT s m) where
(<.>) = apDefault
instance (Bind m, Semigroup w) => Apply (Strict.RWST r w s m) where
(<.>) = apDefault
instance (Bind m, Semigroup w) => Apply (Lazy.RWST r w s m) where
(<.>) = apDefault
instance Apply (ContT r m) where
ContT f <.> ContT v = ContT $ \k -> f $ \g -> v (k . g)
#ifdef MIN_VERSION_comonad
instance (Semigroup e, Apply w) => Apply (EnvT e w) where
EnvT ef wf <.> EnvT ea wa = EnvT (ef <> ea) (wf <.> wa)
instance (Apply w, Semigroup s) => Apply (StoreT s w) where
StoreT ff m <.> StoreT fa n = StoreT ((<*>) <$> ff <.> fa) (m <> n)
instance Apply w => Apply (TracedT m w) where
TracedT wf <.> TracedT wa = TracedT (ap <$> wf <.> wa)
#endif
newtype WrappedApplicative f a = WrapApplicative { unwrapApplicative :: f a }
instance Functor f => Functor (WrappedApplicative f) where
fmap f (WrapApplicative a) = WrapApplicative (f <$> a)
instance Applicative f => Apply (WrappedApplicative f) where
WrapApplicative f <.> WrapApplicative a = WrapApplicative (f <*> a)
WrapApplicative a <. WrapApplicative b = WrapApplicative (a <* b)
WrapApplicative a .> WrapApplicative b = WrapApplicative (a *> b)
instance Applicative f => Applicative (WrappedApplicative f) where
pure = WrapApplicative . pure
WrapApplicative f <*> WrapApplicative a = WrapApplicative (f <*> a)
WrapApplicative a <* WrapApplicative b = WrapApplicative (a <* b)
WrapApplicative a *> WrapApplicative b = WrapApplicative (a *> b)
instance Alternative f => Alternative (WrappedApplicative f) where
empty = WrapApplicative empty
WrapApplicative a <|> WrapApplicative b = WrapApplicative (a <|> b)
newtype MaybeApply f a = MaybeApply { runMaybeApply :: Either (f a) a }
instance Functor f => Functor (MaybeApply f) where
fmap f (MaybeApply (Right a)) = MaybeApply (Right (f a ))
fmap f (MaybeApply (Left fa)) = MaybeApply (Left (f <$> fa))
instance Apply f => Apply (MaybeApply f) where
MaybeApply (Right f) <.> MaybeApply (Right a) = MaybeApply (Right (f a ))
MaybeApply (Right f) <.> MaybeApply (Left fa) = MaybeApply (Left (f <$> fa))
MaybeApply (Left ff) <.> MaybeApply (Right a) = MaybeApply (Left (($a) <$> ff))
MaybeApply (Left ff) <.> MaybeApply (Left fa) = MaybeApply (Left (ff <.> fa))
MaybeApply a <. MaybeApply (Right _) = MaybeApply a
MaybeApply (Right a) <. MaybeApply (Left fb) = MaybeApply (Left (a <$ fb))
MaybeApply (Left fa) <. MaybeApply (Left fb) = MaybeApply (Left (fa <. fb))
MaybeApply (Right _) .> MaybeApply b = MaybeApply b
MaybeApply (Left fa) .> MaybeApply (Right b) = MaybeApply (Left (fa $> b ))
MaybeApply (Left fa) .> MaybeApply (Left fb) = MaybeApply (Left (fa .> fb))
instance Apply f => Applicative (MaybeApply f) where
pure a = MaybeApply (Right a)
(<*>) = (<.>)
(<* ) = (<. )
( *>) = ( .>)
instance Extend f => Extend (MaybeApply f) where
duplicated w@(MaybeApply Right{}) = MaybeApply (Right w)
duplicated (MaybeApply (Left fa)) = MaybeApply (Left (extended (MaybeApply . Left) fa))
#ifdef MIN_VERSION_comonad
instance Comonad f => Comonad (MaybeApply f) where
duplicate w@(MaybeApply Right{}) = MaybeApply (Right w)
duplicate (MaybeApply (Left fa)) = MaybeApply (Left (extend (MaybeApply . Left) fa))
extract (MaybeApply (Left fa)) = extract fa
extract (MaybeApply (Right a)) = a
instance Apply (Cokleisli w a) where
Cokleisli f <.> Cokleisli a = Cokleisli (\w -> (f w) (a w))
#endif
class Apply m => Bind m where
(>>-) :: m a -> (a -> m b) -> m b
m >>- f = join (fmap f m)
join :: m (m a) -> m a
join = (>>- id)
#if __GLASGOW_HASKELL__ >= 708
#endif
returning :: Functor f => f a -> (a -> b) -> f b
returning = flip fmap
apDefault :: Bind f => f (a -> b) -> f a -> f b
apDefault f x = f >>- \f' -> f' <$> x
instance Semigroup m => Bind ((,)m) where
~(m, a) >>- f = let (n, b) = f a in (m <> n, b)
#ifdef MIN_VERSION_tagged
instance Bind (Tagged a) where
Tagged a >>- f = f a
join (Tagged a) = a
#endif
#if defined(MIN_VERSION_tagged) || MIN_VERSION_base(4,7,0)
instance Bind Proxy where
_ >>- _ = Proxy
join _ = Proxy
#endif
instance Bind (Either a) where
Left a >>- _ = Left a
Right a >>- f = f a
instance (Bind f, Bind g) => Bind (Functor.Product f g) where
Functor.Pair m n >>- f = Functor.Pair (m >>- fstP . f) (n >>- sndP . f) where
fstP (Functor.Pair a _) = a
sndP (Functor.Pair _ b) = b
instance Bind ((->)m) where
f >>- g = \e -> g (f e) e
instance Bind [] where
(>>-) = (>>=)
instance Bind NonEmpty where
(>>-) = (>>=)
instance Bind IO where
(>>-) = (>>=)
instance Bind Maybe where
(>>-) = (>>=)
instance Bind Option where
(>>-) = (>>=)
instance Bind Identity where
(>>-) = (>>=)
instance Bind m => Bind (IdentityT m) where
IdentityT m >>- f = IdentityT (m >>- runIdentityT . f)
instance Monad m => Bind (WrappedMonad m) where
WrapMonad m >>- f = WrapMonad $ m >>= unwrapMonad . f
instance (Functor m, Monad m) => Bind (MaybeT m) where
(>>-) = (>>=)
instance (Apply m, Monad m) => Bind (ListT m) where
(>>-) = (>>=)
instance (Functor m, Monad m) => Bind (ErrorT e m) where
m >>- k = ErrorT $ do
a <- runErrorT m
case a of
Left l -> return (Left l)
Right r -> runErrorT (k r)
instance (Functor m, Monad m) => Bind (ExceptT e m) where
m >>- k = ExceptT $ do
a <- runExceptT m
case a of
Left l -> return (Left l)
Right r -> runExceptT (k r)
instance Bind m => Bind (ReaderT e m) where
ReaderT m >>- f = ReaderT $ \e -> m e >>- \x -> runReaderT (f x) e
instance (Bind m, Semigroup w) => Bind (Lazy.WriterT w m) where
m >>- k = Lazy.WriterT $
Lazy.runWriterT m >>- \ ~(a, w) ->
Lazy.runWriterT (k a) `returning` \ ~(b, w') ->
(b, w <> w')
instance (Bind m, Semigroup w) => Bind (Strict.WriterT w m) where
m >>- k = Strict.WriterT $
Strict.runWriterT m >>- \ (a, w) ->
Strict.runWriterT (k a) `returning` \ (b, w') ->
(b, w <> w')
instance Bind m => Bind (Lazy.StateT s m) where
m >>- k = Lazy.StateT $ \s ->
Lazy.runStateT m s >>- \ ~(a, s') ->
Lazy.runStateT (k a) s'
instance Bind m => Bind (Strict.StateT s m) where
m >>- k = Strict.StateT $ \s ->
Strict.runStateT m s >>- \ ~(a, s') ->
Strict.runStateT (k a) s'
instance (Bind m, Semigroup w) => Bind (Lazy.RWST r w s m) where
m >>- k = Lazy.RWST $ \r s ->
Lazy.runRWST m r s >>- \ ~(a, s', w) ->
Lazy.runRWST (k a) r s' `returning` \ ~(b, s'', w') ->
(b, s'', w <> w')
instance (Bind m, Semigroup w) => Bind (Strict.RWST r w s m) where
m >>- k = Strict.RWST $ \r s ->
Strict.runRWST m r s >>- \ (a, s', w) ->
Strict.runRWST (k a) r s' `returning` \ (b, s'', w') ->
(b, s'', w <> w')
instance Bind (ContT r m) where
m >>- k = ContT $ \c -> runContT m $ \a -> runContT (k a) c
#ifdef MIN_VERSION_containers
instance Ord k => Bind (Map k) where
m >>- f = Map.mapMaybeWithKey (\k -> Map.lookup k . f) m
instance Bind IntMap where
m >>- f = IntMap.mapMaybeWithKey (\k -> IntMap.lookup k . f) m
instance Bind Seq where
(>>-) = (>>=)
instance Bind Tree where
(>>-) = (>>=)
#endif
infixl 4 <<.>>, <<., .>>
class Bifunctor p => Biapply p where
(<<.>>) :: p (a -> b) (c -> d) -> p a c -> p b d
(.>>) :: p a b -> p c d -> p c d
a .>> b = bimap (const id) (const id) <<$>> a <<.>> b
(<<.) :: p a b -> p c d -> p a b
a <<. b = bimap const const <<$>> a <<.>> b
instance Biapply (,) where
(f, g) <<.>> (a, b) = (f a, g b)
#if MIN_VERSION_semigroups(0,16,2)
instance Biapply Arg where
Arg f g <<.>> Arg a b = Arg (f a) (g b)
#endif
instance Semigroup x => Biapply ((,,) x) where
(x, f, g) <<.>> (x', a, b) = (x <> x', f a, g b)
instance (Semigroup x, Semigroup y) => Biapply ((,,,) x y) where
(x, y, f, g) <<.>> (x', y', a, b) = (x <> x', y <> y', f a, g b)
instance (Semigroup x, Semigroup y, Semigroup z) => Biapply ((,,,,) x y z) where
(x, y, z, f, g) <<.>> (x', y', z', a, b) = (x <> x', y <> y', z <> z', f a, g b)
instance Biapply Const where
Const f <<.>> Const x = Const (f x)
#ifdef MIN_VERSION_tagged
instance Biapply Tagged where
Tagged f <<.>> Tagged x = Tagged (f x)
#endif
instance (Biapply p, Apply f, Apply g) => Biapply (Biff p f g) where
Biff fg <<.>> Biff xy = Biff (bimap (<.>) (<.>) fg <<.>> xy)
instance Apply f => Biapply (Clown f) where
Clown fg <<.>> Clown xy = Clown (fg <.> xy)
instance Biapply p => Biapply (Flip p) where
Flip fg <<.>> Flip xy = Flip (fg <<.>> xy)
instance Apply g => Biapply (Joker g) where
Joker fg <<.>> Joker xy = Joker (fg <.> xy)
instance Biapply p => Apply (Join p) where
Join f <.> Join a = Join (f <<.>> a)
Join a .> Join b = Join (a .>> b)
Join a <. Join b = Join (a <<. b)
instance (Biapply p, Biapply q) => Biapply (Bifunctor.Product p q) where
Bifunctor.Pair w x <<.>> Bifunctor.Pair y z = Bifunctor.Pair (w <<.>> y) (x <<.>> z)
instance (Apply f, Biapply p) => Biapply (Tannen f p) where
Tannen fg <<.>> Tannen xy = Tannen ((<<.>>) <$> fg <.> xy)
instance Biapply p => Biapply (WrappedBifunctor p) where
WrapBifunctor fg <<.>> WrapBifunctor xy = WrapBifunctor (fg <<.>> xy)