module Data.Semigroup.Traversable.Class
( Bitraversable1(..)
, Traversable1(..)
) where
import Control.Applicative
import Control.Applicative.Backwards
import Control.Applicative.Lift
import Control.Monad.Trans.Identity
import Data.Bitraversable
import Data.Bifunctor
import Data.Bifunctor.Biff
import Data.Bifunctor.Clown
import Data.Bifunctor.Flip
import Data.Bifunctor.Joker
import Data.Bifunctor.Join
import Data.Bifunctor.Product as Bifunctor
import Data.Bifunctor.Tannen
import Data.Bifunctor.Wrapped
import Data.Functor.Apply
import Data.Functor.Compose
#ifdef MIN_VERSION_comonad
import Data.Functor.Coproduct as Functor
#endif
import Data.Functor.Identity
import Data.Functor.Product as Functor
import Data.Functor.Reverse
import Data.Functor.Sum as Functor
import Data.List.NonEmpty (NonEmpty(..))
import Data.Semigroup
import Data.Semigroup.Foldable
import Data.Semigroup.Bifoldable
import Data.Tagged
#if __GLASGOW_HASKELL__ < 710
import Data.Traversable
#endif
import Data.Traversable.Instances ()
#ifdef MIN_VERSION_containers
import Data.Tree
#endif
class (Bifoldable1 t, Bitraversable t) => Bitraversable1 t where
bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> t a c -> f (t b d)
bitraverse1 f g = bisequence1 . bimap f g
bisequence1 :: Apply f => t (f a) (f b) -> f (t a b)
bisequence1 = bitraverse1 id id
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 708
#endif
#if MIN_VERSION_semigroups(0,16,2)
instance Bitraversable1 Arg where
bitraverse1 f g (Arg a b) = Arg <$> f a <.> g b
#endif
instance Bitraversable1 Either where
bitraverse1 f _ (Left a) = Left <$> f a
bitraverse1 _ g (Right b) = Right <$> g b
instance Bitraversable1 (,) where
bitraverse1 f g (a, b) = (,) <$> f a <.> g b
instance Bitraversable1 ((,,) x) where
bitraverse1 f g (x, a, b) = (,,) x <$> f a <.> g b
instance Bitraversable1 ((,,,) x y) where
bitraverse1 f g (x, y, a, b) = (,,,) x y <$> f a <.> g b
instance Bitraversable1 ((,,,,) x y z) where
bitraverse1 f g (x, y, z, a, b) = (,,,,) x y z <$> f a <.> g b
instance Bitraversable1 Const where
bitraverse1 f _ (Const a) = Const <$> f a
instance Bitraversable1 Tagged where
bitraverse1 _ g (Tagged b) = Tagged <$> g b
instance (Bitraversable1 p, Traversable1 f, Traversable1 g) => Bitraversable1 (Biff p f g) where
bitraverse1 f g = fmap Biff . bitraverse1 (traverse1 f) (traverse1 g) . runBiff
instance Traversable1 f => Bitraversable1 (Clown f) where
bitraverse1 f _ = fmap Clown . traverse1 f . runClown
instance Bitraversable1 p => Bitraversable1 (Flip p) where
bitraverse1 f g = fmap Flip . bitraverse1 g f . runFlip
instance Bitraversable1 p => Traversable1 (Join p) where
traverse1 f (Join a) = fmap Join (bitraverse1 f f a)
sequence1 (Join a) = fmap Join (bisequence1 a)
instance Traversable1 g => Bitraversable1 (Joker g) where
bitraverse1 _ g = fmap Joker . traverse1 g . runJoker
instance (Bitraversable1 f, Bitraversable1 g) => Bitraversable1 (Bifunctor.Product f g) where
bitraverse1 f g (Bifunctor.Pair x y) = Bifunctor.Pair <$> bitraverse1 f g x <.> bitraverse1 f g y
instance (Traversable1 f, Bitraversable1 p) => Bitraversable1 (Tannen f p) where
bitraverse1 f g = fmap Tannen . traverse1 (bitraverse1 f g) . runTannen
instance Bitraversable1 p => Bitraversable1 (WrappedBifunctor p) where
bitraverse1 f g = fmap WrapBifunctor . bitraverse1 f g . unwrapBifunctor
class (Foldable1 t, Traversable t) => Traversable1 t where
traverse1 :: Apply f => (a -> f b) -> t a -> f (t b)
sequence1 :: Apply f => t (f b) -> f (t b)
sequence1 = traverse1 id
traverse1 f = sequence1 . fmap f
#if __GLASGOW_HASKELL__ >= 708
#endif
instance Traversable1 Identity where
traverse1 f = fmap Identity . f . runIdentity
instance Traversable1 f => Traversable1 (IdentityT f) where
traverse1 f = fmap IdentityT . traverse1 f . runIdentityT
instance Traversable1 f => Traversable1 (Backwards f) where
traverse1 f = fmap Backwards . traverse1 f . forwards
instance (Traversable1 f, Traversable1 g) => Traversable1 (Compose f g) where
traverse1 f = fmap Compose . traverse1 (traverse1 f) . getCompose
instance Traversable1 f => Traversable1 (Lift f) where
traverse1 f (Pure x) = Pure <$> f x
traverse1 f (Other y) = Other <$> traverse1 f y
instance (Traversable1 f, Traversable1 g) => Traversable1 (Functor.Product f g) where
traverse1 f (Functor.Pair a b) = Functor.Pair <$> traverse1 f a <.> traverse1 f b
instance Traversable1 f => Traversable1 (Reverse f) where
traverse1 f = fmap Reverse . forwards . traverse1 (Backwards . f) . getReverse
instance (Traversable1 f, Traversable1 g) => Traversable1 (Functor.Sum f g) where
traverse1 f (Functor.InL x) = Functor.InL <$> traverse1 f x
traverse1 f (Functor.InR y) = Functor.InR <$> traverse1 f y
#ifdef MIN_VERSION_comonad
instance (Traversable1 f, Traversable1 g) => Traversable1 (Coproduct f g) where
traverse1 f = coproduct
(fmap (Coproduct . Left) . traverse1 f)
(fmap (Coproduct . Right) . traverse1 f)
#endif
#ifdef MIN_VERSION_containers
instance Traversable1 Tree where
traverse1 f (Node a []) = (`Node`[]) <$> f a
traverse1 f (Node a (x:xs)) = (\b (y:|ys) -> Node b (y:ys)) <$> f a <.> traverse1 (traverse1 f) (x :| xs)
#endif
instance Traversable1 NonEmpty where
traverse1 f (a :| []) = (:|[]) <$> f a
traverse1 f (a :| (b: bs)) = (\a' (b':| bs') -> a' :| b': bs') <$> f a <.> traverse1 f (b :| bs)
instance Traversable1 ((,) a) where
traverse1 f (a, b) = (,) a <$> f b
instance Traversable1 g => Traversable1 (Joker g a) where
traverse1 g = fmap Joker . traverse1 g . runJoker