module Data.Semigroup.Traversable
( Traversable1(..)
, foldMap1Default
) where
import Control.Applicative
import Control.Monad.Trans.Identity
import Data.Functor.Apply
import Data.Functor.Compose
import Data.Functor.Coproduct
import Data.Functor.Identity
import Data.Functor.Product
import Data.List.NonEmpty (NonEmpty(..))
import Data.Semigroup hiding (Product)
import Data.Semigroup.Foldable
import Data.Traversable
import Data.Traversable.Instances ()
import Data.Tree
class (Foldable1 t, Traversable t) => Traversable1 t where
traverse1 :: Apply f => (a -> f b) -> t a -> f (t b)
sequence1 :: Apply f => t (f b) -> f (t b)
sequence1 = traverse1 id
traverse1 f = sequence1 . fmap f
foldMap1Default :: (Traversable1 f, Semigroup m) => (a -> m) -> f a -> m
foldMap1Default f = getConst . traverse1 (Const . f)
instance Traversable1 Identity where
traverse1 f = fmap Identity . f . runIdentity
instance Traversable1 f => Traversable1 (IdentityT f) where
traverse1 f = fmap IdentityT . traverse1 f . runIdentityT
instance (Traversable1 f, Traversable1 g) => Traversable1 (Compose f g) where
traverse1 f = fmap Compose . traverse1 (traverse1 f) . getCompose
instance (Traversable1 f, Traversable1 g) => Traversable1 (Product f g) where
traverse1 f (Pair a b) = Pair <$> traverse1 f a <.> traverse1 f b
instance (Traversable1 f, Traversable1 g) => Traversable1 (Coproduct f g) where
traverse1 f = coproduct
(fmap (Coproduct . Left) . traverse1 f)
(fmap (Coproduct . Right) . traverse1 f)
instance Traversable1 Tree where
traverse1 f (Node a []) = (`Node`[]) <$> f a
traverse1 f (Node a (x:xs)) = (\b (y:|ys) -> Node b (y:ys)) <$> f a <.> traverse1 (traverse1 f) (x :| xs)
instance Traversable1 NonEmpty where
traverse1 f (a :| []) = (:|[]) <$> f a
traverse1 f (a :| (b: bs)) = (\a' (b':| bs') -> a' :| b': bs') <$> f a <.> traverse1 f (b :| bs)