Copyright | (c) Levent Erkok |
---|---|
License | BSD3 |
Maintainer | erkokl@gmail.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
Demonstrates the extension field (oo
/epsilon
) optimization results.
Documentation
Optimization goals where min/max values might require assignments to values that are infinite (integer case), or infinite/epsion (real case). This simple example demostrates how SBV can be used to extract such values.
We have:
>>>
optimize Independent problem
Objective "one-x": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (2.0 * epsilon) :: Real min_z = 5.0 + epsilon :: Real Objective "min_y": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (2.0 * epsilon) :: Real min_z = 5.0 + epsilon :: Real Objective "min_z": Optimal in an extension field: one-x = oo :: Integer min_y = 7.0 + (2.0 * epsilon) :: Real min_z = 5.0 + epsilon :: Real