{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Row.Internal -- -- This module implements the internals of open records and variants. -- ----------------------------------------------------------------------------- module Data.Row.Internal ( -- * Rows Row(..) , Label(..) , KnownSymbol , LT(..) , Empty , HideType(..) -- * Row Operations , Extend, Modify, Rename , type (.\), type (.!), type (.-), type (.+), type (.\\), type (.==) , type (.\/) , Lacks, HasType -- * Row Classes , Labels, labels, labels' , Forall(..), Forall2(..) , Unconstrained1 -- * Helper functions , show' , toKey , type (≈) , WellBehaved, AllUniqueLabels, Zip, Map, Subset, Disjoint , mapForall , freeForall , uniqueMap , IsA(..) , As(..) , FoldStep ) where import Data.Constraint import Data.Functor.Const import Data.Proxy import Data.String (IsString (fromString)) import Data.Text (Text) import qualified Data.Text as Text import Data.Type.Equality (type (==)) import qualified Unsafe.Coerce as UNSAFE import GHC.OverloadedLabels import GHC.TypeLits import qualified GHC.TypeLits as TL {-------------------------------------------------------------------- Rows --------------------------------------------------------------------} -- | The kind of rows. This type is only used as a datakind. A row is a typelevel entity telling us -- which symbols are associated with which types. newtype Row a = R [LT a] -- ^ A row is a list of symbol-to-type pairs that should always be sorted -- lexically by the symbol. -- The constructor is exported here (because this is an internal module) but -- should not be exported elsewhere. -- | The kind of elements of rows. Each element is a label and its associated type. data LT a = Symbol :-> a -- | A label data Label (s :: Symbol) = Label instance KnownSymbol s => Show (Label s) where show = symbolVal instance x ≈ y => IsLabel x (Label y) where #if __GLASGOW_HASKELL__ >= 802 fromLabel = Label #else fromLabel _ = Label #endif -- | A helper function for showing labels show' :: (IsString s, Show a) => a -> s show' = fromString . show -- | A helper function to turn a Label directly into 'Text'. toKey :: forall s. KnownSymbol s => Label s -> Text toKey = Text.pack . symbolVal -- | Type level version of 'empty' type Empty = R '[] -- | Elements stored in a Row type are usually hidden. data HideType where HideType :: a -> HideType {-------------------------------------------------------------------- Row operations --------------------------------------------------------------------} infixl 4 .\ {- This comment needed to appease CPP -} -- | Does the row lack (i.e. it does not have) the specified label? type family (r :: Row *) .\ (l :: Symbol) :: Constraint where R r .\ l = LacksR l r r -- | Type level Row extension type family Extend (l :: Symbol) (a :: *) (r :: Row *) :: Row * where Extend l a (R x) = R (Inject (l :-> a) x) -- | Type level Row modification type family Modify (l :: Symbol) (a :: *) (r :: Row *) :: Row * where Modify l a (R ρ) = R (ModifyR l a ρ) -- | Type level row renaming type family Rename (l :: Symbol) (l' :: Symbol) (r :: Row *) :: Row * where Rename l l' r = Extend l' (r .! l) (r .- l) infixl 5 .! -- | Type level label fetching type family (r :: Row *) .! (t :: Symbol) :: * where R r .! l = Get l r infixl 6 .- -- | Type level Row element removal type family (r :: Row *) .- (s :: Symbol) :: Row * where R r .- l = R (Remove l r) infixl 6 .+ -- | Type level Row append type family (l :: Row *) .+ (r :: Row *) :: Row * where R l .+ R r = R (Merge l r) infixl 6 .\\ {- This comment needed to appease CPP -} -- | Type level Row difference. That is, @l .\\\\ r@ is the row remaining after -- removing any matching elements of @r@ from @l@. type family (l :: Row *) .\\ (r :: Row *) :: Row * where R l .\\ R r = R (Diff l r) -- | The minimum join of the two rows. type family (l :: Row *) .\/ (r :: Row *) where R l .\/ R r = R (MinJoinR l r) {-------------------------------------------------------------------- Syntactic sugar for record operations --------------------------------------------------------------------} -- | Alias for '.\'. It is a class rather than an alias, so that -- it can be partially applied. class Lacks (l :: Symbol) (r :: Row *) instance (r .\ l) => Lacks l r -- | Alias for @(r .! l) ≈ a@. It is a class rather than an alias, so that -- it can be partially applied. class (r .! l ≈ a) => HasType l a r instance (r .! l ≈ a) => HasType l a r -- | A type level way to create a singleton Row. infix 7 .== type (l :: Symbol) .== (a :: *) = Extend l a Empty {-------------------------------------------------------------------- Constrained record operations --------------------------------------------------------------------} -- | Proof that the given label is a valid candidate for the next step -- in a metamorph fold, i.e. it's not in the list yet and, when sorted, -- will be placed at the head. type FoldStep ℓ τ ρ = Inject (ℓ :-> τ) ρ ≈ ℓ :-> τ ': ρ -- | Any structure over a row in which every element is similarly constrained can -- be metamorphized into another structure over the same row. class Forall (r :: Row *) (c :: * -> Constraint) where -- | A metamorphism is an unfold followed by a fold. This one is for -- product-like row-types (e.g. Rec). metamorph :: forall (f :: Row * -> *) (g :: Row * -> *) (h :: * -> *). Proxy h -> (f Empty -> g Empty) -- ^ The way to transform the empty element -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> f ('R (ℓ :-> τ ': ρ)) -> (h τ, f ('R ρ))) -- ^ The unfold -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ) => Label ℓ -> h τ -> g ('R ρ) -> g ('R (ℓ :-> τ ': ρ))) -- ^ The fold -> f r -- ^ The input structure -> g r -- | A metamorphism is an unfold followed by a fold. This one is for -- sum-like row-types (e.g. Var). metamorph' :: forall (f :: Row * -> *) (g :: Row * -> *) (h :: * -> *). Proxy h -> (f Empty -> g Empty) -- ^ The way to transform the empty element -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> f ('R (ℓ :-> τ ': ρ)) -> Either (h τ) (f ('R ρ))) -- ^ The unfold -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ) => Label ℓ -> Either (h τ) (g ('R ρ)) -> g ('R (ℓ :-> τ ': ρ))) -- ^ The fold -> f r -- ^ The input structure -> g r -- | This data type is used to for its ability to existentially bind a type -- variable. Particularly, it says that for the type 'a', there exists a 't' -- such that 'a ~ f t' and 'c t' holds. data As c f a where As :: forall c f a t. (a ~ f t, c t) => As c f a -- | A class to capture the idea of 'As' so that it can be partially applied in -- a context. class IsA c f a where as :: As c f a instance c a => IsA c f (f a) where as = As -- | An internal type used by the 'metamorph' in 'mapForall'. newtype MapForall c f (r :: Row *) = MapForall { unMapForall :: Dict (Forall (Map f r) (IsA c f)) } -- | This allows us to derive a `Forall (Map f r) ..` from a `Forall r ..`. mapForall :: forall f c ρ. Forall ρ c :- Forall (Map f ρ) (IsA c f) mapForall = Sub $ unMapForall $ metamorph @ρ @c @(Const ()) @(MapForall c f) @(Const ()) Proxy empty uncons cons $ Const () where empty :: Const () Empty -> MapForall c f Empty empty _ = MapForall Dict uncons :: forall l t r. (KnownSymbol l, c t) => Label l -> Const () ('R (l :-> t ': r)) -> (Const () t, Const () ('R r)) uncons _ _ = (Const (), Const ()) cons :: forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ) => Label ℓ -> Const () τ -> MapForall c f ('R ρ) -> MapForall c f ('R (ℓ :-> τ ': ρ)) cons _ _ (MapForall Dict) = case UNSAFE.unsafeCoerce @(Dict Unconstrained) @(Dict (FoldStep ℓ (f τ) (MapR f ρ))) Dict of Dict -> MapForall Dict -- | Map preserves uniqueness of labels. uniqueMap :: forall f ρ. AllUniqueLabels ρ :- AllUniqueLabels (Map f ρ) uniqueMap = Sub $ UNSAFE.unsafeCoerce @(Dict Unconstrained) Dict -- | Allow any 'Forall` over a row-type, be usable for 'Unconstrained1'. freeForall :: forall r c. Forall r c :- Forall r Unconstrained1 freeForall = Sub $ UNSAFE.unsafeCoerce @(Dict (Forall r c)) Dict instance Forall (R '[]) c where {-# INLINE metamorph #-} metamorph _ empty _ _ = empty {-# INLINE metamorph' #-} metamorph' _ empty _ _ = empty instance (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ, Forall ('R ρ) c) => Forall ('R (ℓ :-> τ ': ρ)) c where metamorph :: forall (f :: Row * -> *) (g :: Row * -> *) (h :: * -> *). Proxy h -> (f Empty -> g Empty) -- ^ The way to transform the empty element -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> f ('R (ℓ :-> τ ': ρ)) -> (h τ, f ('R ρ))) -- ^ The unfold -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ) => Label ℓ -> h τ -> g ('R ρ) -> g ('R (ℓ :-> τ ': ρ))) -- ^ The fold -> f ('R (ℓ :-> τ ': ρ)) -- ^ The input structure -> g ('R (ℓ :-> τ ': ρ)) {-# INLINE metamorph #-} metamorph _ empty uncons cons r = cons Label t $ metamorph @('R ρ) @c @_ @_ @h Proxy empty uncons cons r' where (t, r') = uncons Label r metamorph' :: forall (f :: Row * -> *) (g :: Row * -> *) (h :: * -> *). Proxy h -> (f Empty -> g Empty) -- ^ The way to transform the empty element -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ) => Label ℓ -> f ('R (ℓ :-> τ ': ρ)) -> Either (h τ) (f ('R ρ))) -- ^ The unfold -> (forall ℓ τ ρ. (KnownSymbol ℓ, c τ, FoldStep ℓ τ ρ) => Label ℓ -> Either (h τ) (g ('R ρ)) -> g ('R (ℓ :-> τ ': ρ))) -- ^ The fold -> f ('R (ℓ :-> τ ': ρ)) -- ^ The input structure -> g ('R (ℓ :-> τ ': ρ)) {-# INLINE metamorph' #-} metamorph' _ empty uncons cons r = cons Label $ metamorph' @('R ρ) @c @_ @_ @h Proxy empty uncons cons <$> uncons Label r -- | Any structure over two rows in which every element of both rows satisfies the -- given constraint can be metamorphized into another structure over both of the -- rows. -- TODO: Perhaps it should be over two constraints? But this hasn't seemed necessary -- in practice. class Forall2 (r1 :: Row *) (r2 :: Row *) (c :: * -> Constraint) where -- | A metamorphism is a fold followed by an unfold. Here, we fold both of the inputs. metamorph2 :: forall (f :: Row * -> *) (g :: Row * -> *) (h :: Row * -> Row * -> *) (f' :: * -> *) (g' :: * -> *). Proxy f' -> Proxy g' -> (f Empty -> g Empty -> h Empty Empty) -> (forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, c τ1, c τ2) => Label ℓ -> f ('R (ℓ :-> τ1 ': ρ1)) -> g ('R (ℓ :-> τ2 ': ρ2)) -> ((f' τ1, f ('R ρ1)), (g' τ2, g ('R ρ2)))) -> (forall ℓ τ1 τ2 ρ1 ρ2. (KnownSymbol ℓ, c τ1, c τ2) => Label ℓ -> f' τ1 -> g' τ2 -> h ('R ρ1) ('R ρ2) -> h ('R (ℓ :-> τ1 ': ρ1)) ('R (ℓ :-> τ2 ': ρ2))) -> f r1 -> g r2 -> h r1 r2 instance Forall2 (R '[]) (R '[]) c where {-# INLINE metamorph2 #-} metamorph2 _ _ empty _ _ = empty instance (KnownSymbol ℓ, c τ1, c τ2, Forall2 ('R ρ1) ('R ρ2) c) => Forall2 ('R (ℓ :-> τ1 ': ρ1)) ('R (ℓ :-> τ2 ': ρ2)) c where {-# INLINE metamorph2 #-} metamorph2 f g empty uncons cons r1 r2 = cons (Label @ℓ) t1 t2 $ metamorph2 @('R ρ1) @('R ρ2) @c f g empty uncons cons r1' r2' where ((t1, r1'), (t2, r2')) = uncons (Label @ℓ) r1 r2 -- | A null constraint class Unconstrained instance Unconstrained -- | A null constraint of one argument class Unconstrained1 a instance Unconstrained1 a -- | The labels in a Row. type family Labels (r :: Row a) where Labels (R '[]) = '[] Labels (R (l :-> a ': xs)) = l ': Labels (R xs) -- | Return a list of the labels in a row type. labels :: forall ρ c s. (IsString s, Forall ρ c) => [s] labels = getConst $ metamorph @ρ @c @(Const ()) @(Const [s]) @(Const ()) Proxy (const $ Const []) doUncons doCons (Const ()) where doUncons _ _ = (Const (), Const ()) doCons l _ (Const c) = Const $ show' l : c -- | Return a list of the labels in a row type and is specialized to the 'Unconstrained1' constraint. labels' :: forall ρ s. (IsString s, Forall ρ Unconstrained1) => [s] labels' = labels @ρ @Unconstrained1 {-------------------------------------------------------------------- Convenient type families and classes --------------------------------------------------------------------} -- | A convenient way to provide common, easy constraints type WellBehaved ρ = (Forall ρ Unconstrained1, AllUniqueLabels ρ) -- | Are all of the labels in this Row unique? type family AllUniqueLabels (r :: Row *) :: Constraint where AllUniqueLabels (R r) = AllUniqueLabelsR r type family AllUniqueLabelsR (r :: [LT *]) :: Constraint where AllUniqueLabelsR '[] = Unconstrained AllUniqueLabelsR '[l :-> a] = Unconstrained AllUniqueLabelsR (l :-> a ': l :-> b ': _) = TypeError (TL.Text "The label " :<>: ShowType l :<>: TL.Text " is not unique." :$$: TL.Text "It is assigned to both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b) AllUniqueLabelsR (l :-> a ': l' :-> b ': r) = AllUniqueLabelsR (l' :-> b ': r) -- | Is the first row a subset of the second? type family Subset (r1 :: Row *) (r2 :: Row *) :: Constraint where Subset (R r1) (R r2) = SubsetR r1 r2 type family SubsetR (r1 :: [LT *]) (r2 :: [LT *]) :: Constraint where SubsetR '[] _ = Unconstrained SubsetR x '[] = TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first contains the bindings " :<>: ShowType x :<>: TL.Text " while the second does not.") SubsetR (l :-> a ': x) (l :-> a ': y) = SubsetR x y SubsetR (l :-> a ': x) (l :-> b ': y) = TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first assigns the label " :<>: ShowType l :<>: TL.Text " to " :<>: ShowType a :<>: TL.Text " while the second assigns it to " :<>: ShowType b) SubsetR (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (TypeError (TL.Text "One row-type is not a subset of the other." :$$: TL.Text "The first assigns the label " :<>: ShowType hl :<>: TL.Text " to " :<>: ShowType al :<>: TL.Text " while the second has no assignment for it.")) (SubsetR (hl :-> al ': tl) tr) -- | A type synonym for disjointness. type Disjoint l r = ( WellBehaved l , WellBehaved r , Subset l (l .+ r) , Subset r (l .+ r) , l .+ r .\\ l ≈ r , l .+ r .\\ r ≈ l) -- | Map a type level function over a Row. type family Map (f :: a -> b) (r :: Row a) :: Row b where Map f (R r) = R (MapR f r) type family MapR (f :: a -> b) (r :: [LT a]) :: [LT b] where MapR f '[] = '[] MapR f (l :-> v ': t) = l :-> f v ': MapR f t -- | Zips two rows together to create a Row of the pairs. -- The two rows must have the same set of labels. type family Zip (r1 :: Row *) (r2 :: Row *) where Zip (R r1) (R r2) = R (ZipR r1 r2) type family ZipR (r1 :: [LT *]) (r2 :: [LT *]) where ZipR '[] '[] = '[] ZipR (l :-> t1 ': r1) (l :-> t2 ': r2) = l :-> (t1, t2) ': ZipR r1 r2 ZipR (l :-> t1 ': r1) _ = TypeError (TL.Text "Row types with different label sets cannot be zipped" :$$: TL.Text "For one, the label " :<>: ShowType l :<>: TL.Text " is not in both lists.") ZipR '[] (l :-> t ': r) = TypeError (TL.Text "Row types with different label sets cannot be zipped" :$$: TL.Text "For one, the label " :<>: ShowType l :<>: TL.Text " is not in both lists.") type family Inject (l :: LT *) (r :: [LT *]) where Inject (l :-> t) '[] = (l :-> t ': '[]) Inject (l :-> t) (l :-> t' ': x) = TypeError (TL.Text "Cannot inject a label into a row type that already has that label" :$$: TL.Text "The label " :<>: ShowType l :<>: TL.Text " was already assigned the type " :<>: ShowType t' :<>: TL.Text " and is now trying to be assigned the type " :<>: ShowType t :<>: TL.Text ".") Inject (l :-> t) (l' :-> t' ': x) = Ifte (l <=.? l') (l :-> t ': l' :-> t' ': x) (l' :-> t' ': Inject (l :-> t) x) -- | Type level Row modification helper type family ModifyR (l :: Symbol) (a :: *) (ρ :: [LT *]) :: [LT *] where ModifyR l a (l :-> a' ': ρ) = l :-> a ': ρ ModifyR l a (l' :-> a' ': ρ) = l' :-> a' ': ModifyR l a ρ ModifyR l a '[] = TypeError (TL.Text "Tried to modify the label " :<>: ShowType l :<>: TL.Text ", but it does not appear in the row-type.") type family Ifte (c :: Bool) (t :: k) (f :: k) where Ifte True t f = t Ifte False t f = f type family Get (l :: Symbol) (r :: [LT *]) where Get l '[] = TypeError (TL.Text "No such field: " :<>: ShowType l) Get l (l :-> t ': x) = t Get l (l' :-> t ': x) = Get l x type family Remove (l :: Symbol) (r :: [LT *]) where Remove l r = RemoveT l r r type family RemoveT (l :: Symbol) (r :: [LT *]) (r_orig :: [LT *]) where RemoveT l (l :-> t ': x) _ = x RemoveT l (l' :-> t ': x) r = l' :-> t ': RemoveT l x r RemoveT l '[] r = TypeError (TL.Text "Cannot remove a label that does not occur in the row type." :$$: TL.Text "The label " :<>: ShowType l :<>: TL.Text " is not in " :<>: ShowType r) type family LacksR (l :: Symbol) (r :: [LT *]) (r_orig :: [LT *]) :: Constraint where LacksR l '[] _ = Unconstrained LacksR l (l :-> t ': x) r = TypeError (TL.Text "The label " :<>: ShowType l :<>: TL.Text " already exists in " :<>: ShowType r) LacksR l (l' :-> _ ': x) r = Ifte (l <=.? l') Unconstrained (LacksR l x r) type family Merge (l :: [LT *]) (r :: [LT *]) where Merge '[] r = r Merge l '[] = l Merge (h :-> a ': tl) (h :-> b ': tr) = TypeError (TL.Text "The label " :<>: ShowType h :<>: TL.Text " has conflicting assignments." :$$: TL.Text "Its type is both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b :<>: TL.Text ".") Merge (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (hl :-> al ': Merge tl (hr :-> ar ': tr)) (hr :-> ar ': Merge (hl :-> al ': tl) tr) type family MinJoinR (l :: [LT *]) (r :: [LT *]) where MinJoinR '[] r = r MinJoinR l '[] = l MinJoinR (h :-> a ': tl) (h :-> a ': tr) = (h :-> a ': MinJoinR tl tr) MinJoinR (h :-> a ': tl) (h :-> b ': tr) = TypeError (TL.Text "The label " :<>: ShowType h :<>: TL.Text " has conflicting assignments." :$$: TL.Text "Its type is both " :<>: ShowType a :<>: TL.Text " and " :<>: ShowType b :<>: TL.Text ".") MinJoinR (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (CmpSymbol hl hr == 'LT) (hl :-> al ': MinJoinR tl (hr :-> ar ': tr)) (hr :-> ar ': MinJoinR (hl :-> al ': tl) tr) -- | Returns the left list with all of the elements from the right list removed. type family Diff (l :: [LT *]) (r :: [LT *]) where Diff '[] r = '[] Diff l '[] = l Diff (l :-> al ': tl) (l :-> al ': tr) = Diff tl tr Diff (hl :-> al ': tl) (hr :-> ar ': tr) = Ifte (hl <=.? hr) (hl :-> al ': Diff tl (hr :-> ar ': tr)) (Diff (hl :-> al ': tl) tr) -- | There doesn't seem to be a (<=.?) :: Symbol -> Symbol -> Bool, -- so here it is in terms of other ghc-7.8 type functions type a <=.? b = (CmpSymbol a b == 'LT) -- | A lower fixity operator for type equality infix 4 ≈ type a ≈ b = a ~ b