rio-0.1.15.1: A standard library for Haskell

Safe HaskellSafe
LanguageHaskell2010

RIO.Map.Partial

Contents

Description

Strict Map partial functions. Import as:

import qualified RIO.Map.Partial as Map'
Synopsis

Operators

(!) :: Ord k => Map k a -> k -> a infixl 9 #

O(log n). Find the value at a key. Calls error when the element can not be found.

fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
fromList [(5,'a'), (3,'b')] ! 5 == 'a'

Indexed

elemAt :: Int -> Map k a -> (k, a) #

O(log n). Retrieve an element by its index, i.e. by its zero-based index in the sequence sorted by keys. If the index is out of range (less than zero, greater or equal to size of the map), error is called.

elemAt 0 (fromList [(5,"a"), (3,"b")]) == (3,"b")
elemAt 1 (fromList [(5,"a"), (3,"b")]) == (5, "a")
elemAt 2 (fromList [(5,"a"), (3,"b")])    Error: index out of range

deleteAt :: Int -> Map k a -> Map k a #

O(log n). Delete the element at index, i.e. by its zero-based index in the sequence sorted by keys. If the index is out of range (less than zero, greater or equal to size of the map), error is called.

deleteAt 0  (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
deleteAt 1  (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
deleteAt 2 (fromList [(5,"a"), (3,"b")])     Error: index out of range
deleteAt (-1) (fromList [(5,"a"), (3,"b")])  Error: index out of range

findIndex :: Ord k => k -> Map k a -> Int #

O(log n). Return the index of a key, which is its zero-based index in the sequence sorted by keys. The index is a number from 0 up to, but not including, the size of the map. Calls error when the key is not a member of the map.

findIndex 2 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map
findIndex 3 (fromList [(5,"a"), (3,"b")]) == 0
findIndex 5 (fromList [(5,"a"), (3,"b")]) == 1
findIndex 6 (fromList [(5,"a"), (3,"b")])    Error: element is not in the map

updateAt :: (k -> a -> Maybe a) -> Int -> Map k a -> Map k a #

O(log n). Update the element at index. Calls error when an invalid index is used.

updateAt (\ _ _ -> Just "x") 0    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "x"), (5, "a")]
updateAt (\ _ _ -> Just "x") 1    (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "x")]
updateAt (\ _ _ -> Just "x") 2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
updateAt (\ _ _ -> Just "x") (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range
updateAt (\_ _  -> Nothing)  0    (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"
updateAt (\_ _  -> Nothing)  1    (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
updateAt (\_ _  -> Nothing)  2    (fromList [(5,"a"), (3,"b")])    Error: index out of range
updateAt (\_ _  -> Nothing)  (-1) (fromList [(5,"a"), (3,"b")])    Error: index out of range

Min/Max

findMin :: Map k a -> (k, a) #

O(log n). The minimal key of the map. Calls error if the map is empty.

findMin (fromList [(5,"a"), (3,"b")]) == (3,"b")
findMin empty                            Error: empty map has no minimal element

findMax :: Map k a -> (k, a) #

deleteFindMin :: Map k a -> ((k, a), Map k a) #

O(log n). Delete and find the minimal element.

deleteFindMin (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((3,"b"), fromList[(5,"a"), (10,"c")])
deleteFindMin                                            Error: can not return the minimal element of an empty map

deleteFindMax :: Map k a -> ((k, a), Map k a) #

O(log n). Delete and find the maximal element.

deleteFindMax (fromList [(5,"a"), (3,"b"), (10,"c")]) == ((10,"c"), fromList [(3,"b"), (5,"a")])
deleteFindMax empty                                      Error: can not return the maximal element of an empty map