{-# LANGUAGE CPP #-} {-# LANGUAGE Safe #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE RebindableSyntax #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeFamilies #-} module Data.Semimodule ( -- * Types type (**) , type (++) , type Free , type Basis , type Basis2 , type Basis3 , type FreeModule , type FreeSemimodule -- * Left modules , type LeftModule , LeftSemimodule(..) , (*.) , (/.) , (\.) , lerp , lscaleDef , negateDef -- * Right modules , type RightModule , RightSemimodule(..) , (.*) , (./) , (.\) , rscaleDef -- * Bimodules , type Bimodule , Bisemimodule(..) ) where import safe Data.Complex import safe Data.Fixed import safe Data.Functor.Rep import safe Data.Functor.Compose import safe Data.Functor.Product import safe Data.Int import safe Data.Semifield import safe Data.Semiring import safe Data.Word import safe Foreign.C.Types (CFloat(..),CDouble(..)) import safe GHC.Real hiding (Fractional(..)) import safe Numeric.Natural import safe Prelude (fromInteger) import safe Prelude hiding (Num(..), Fractional(..), sum, product) infixr 2 ** infixr 1 ++ -- | A tensor product of semimodule morphisms. -- type (f ** g) = Compose f g -- | A direct sum of free semimodule elements. -- type (f ++ g) = Product f g type Free f = (Representable f) type Basis b f = (Free f, Rep f ~ b, Eq b) type Basis2 b c f g = (Basis b f, Basis c g) type Basis3 b c d f g h = (Basis b f, Basis c g, Basis d h) type FreeModule a f = (Free f, (Additive-Group) (f a), Bimodule a a (f a)) type FreeSemimodule a f = (Free f, Bisemimodule a a (f a)) ------------------------------------------------------------------------------- -- Left modules ------------------------------------------------------------------------------- type LeftModule l a = (Ring l, (Additive-Group) a, LeftSemimodule l a) -- | < https://en.wikipedia.org/wiki/Semimodule Left semimodule > over a commutative semiring. -- -- All instances must satisfy the following identities: -- -- @ -- 'lscale' s (x '+' y) = 'lscale' s x '+' 'lscale' s y -- 'lscale' (s1 '+' s2) x = 'lscale' s1 x '+' 'lscale' s2 x -- 'lscale' (s1 '*' s2) = 'lscale' s1 . 'lscale' s2 -- 'lscale' 'zero' = 'zero' -- @ -- -- When the ring of coefficients /s/ is unital we must additionally have: -- @ -- 'lscale' 'one' = 'id' -- @ -- -- See the properties module for a detailed specification of the laws. -- class (Semiring l, (Additive-Monoid) a) => LeftSemimodule l a where -- | Left-multiply by a scalar. -- lscale :: l -> a -> a infixr 7 *., \., /. -- | Left-multiply a module element by a scalar. -- (*.) :: LeftSemimodule l a => l -> a -> a (*.) = lscale -- | Right-divide a vector by a scalar (on the left). -- (/.) :: Semifield a => Functor f => a -> f a -> f a a /. f = (/ a) <$> f -- | Left-divide a vector by a scalar. -- (\.) :: Semifield a => Functor f => a -> f a -> f a a \. f = (a \\) <$> f -- | Linearly interpolate between two vectors. -- -- >>> u = V3 (1 :% 1) (2 :% 1) (3 :% 1) :: V3 Rational -- >>> v = V3 (2 :% 1) (4 :% 1) (6 :% 1) :: V3 Rational -- >>> r = 1 :% 2 :: Rational -- >>> lerp r u v -- V3 (6 % 4) (12 % 4) (18 % 4) -- lerp :: LeftModule r a => r -> a -> a -> a lerp r f g = r *. f + (one - r) *. g -- | Default definition of 'lscale' for a free module. -- lscaleDef :: Semiring a => Functor f => a -> f a -> f a lscaleDef a f = (a *) <$> f -- | Default definition of '<<' for a commutative group. -- negateDef :: LeftModule Integer a => a -> a negateDef a = (-1 :: Integer) *. a ------------------------------------------------------------------------------- -- Right modules ------------------------------------------------------------------------------- type RightModule r a = (Ring r, (Additive-Group) a, RightSemimodule r a) -- | < https://en.wikipedia.org/wiki/Semimodule Right semimodule > over a commutative semiring. -- -- The laws for right semimodules are analagous to those of left semimodules. -- -- See the properties module for a detailed specification. -- class (Semiring r, (Additive-Monoid) a) => RightSemimodule r a where -- | Right-multiply by a scalar. -- rscale :: r -> a -> a infixl 7 .*, .\, ./ -- | Right-multiply a module element by a scalar. -- (.*) :: RightSemimodule r a => a -> r -> a (.*) = flip rscale -- | Right-divide a vector by a scalar. -- (./) :: Semifield a => Functor f => f a -> a -> f a (./) = flip (/.) -- | Left-divide a vector by a scalar (on the right). -- (.\) :: Semifield a => Functor f => f a -> a -> f a (.\) = flip (\.) -- | Default definition of 'rscale' for a free module. -- rscaleDef :: Semiring a => Functor f => a -> f a -> f a rscaleDef a f = (* a) <$> f ------------------------------------------------------------------------------- -- Bimodules ------------------------------------------------------------------------------- type Bimodule l r a = (LeftModule l a, RightModule r a, Bisemimodule l r a) -- | < https://en.wikipedia.org/wiki/Bimodule Bisemimodule > over a commutative semiring. -- -- @ -- 'lscale' l . 'rscale' r = 'rscale' r . 'lscale' l -- @ -- class (LeftSemimodule l a, RightSemimodule r a) => Bisemimodule l r a where -- | Left and right-multiply by two scalars. -- discale :: l -> r -> a -> a discale l r = lscale l . rscale r ------------------------------------------------------------------------------- -- Instances ------------------------------------------------------------------------------- instance Semiring l => LeftSemimodule l () where lscale _ = const () instance (Additive-Monoid) a => LeftSemimodule () a where lscale _ = id instance (Additive-Monoid) a => LeftSemimodule Natural a where lscale l a = unAdditive $ mreplicate l (Additive a) instance ((Additive-Monoid) a, (Additive-Group) a) => LeftSemimodule Integer a where lscale l a = unAdditive $ greplicate l (Additive a) instance LeftSemimodule l a => LeftSemimodule l (e -> a) where lscale l = fmap (l *.) instance (LeftSemimodule l a, LeftSemimodule l b) => LeftSemimodule l (a, b) where lscale n (a, b) = (n *. a, n *. b) instance (LeftSemimodule l a, LeftSemimodule l b, LeftSemimodule l c) => LeftSemimodule l (a, b, c) where lscale n (a, b, c) = (n *. a, n *. b, n *. c) instance Semiring a => LeftSemimodule a (Ratio a) where lscale l (x :% y) = (l * x) :% y instance Ring a => LeftSemimodule a (Complex a) where lscale l (x :+ y) = (l * x) :+ (l * y) instance Ring a => LeftSemimodule (Complex a) (Complex a) where lscale = (*) #define deriveLeftSemimodule(ty) \ instance LeftSemimodule ty ty where { \ lscale = (*) \ ; {-# INLINE lscale #-} \ } deriveLeftSemimodule(Bool) deriveLeftSemimodule(Int) deriveLeftSemimodule(Int8) deriveLeftSemimodule(Int16) deriveLeftSemimodule(Int32) deriveLeftSemimodule(Int64) deriveLeftSemimodule(Word) deriveLeftSemimodule(Word8) deriveLeftSemimodule(Word16) deriveLeftSemimodule(Word32) deriveLeftSemimodule(Word64) deriveLeftSemimodule(Uni) deriveLeftSemimodule(Deci) deriveLeftSemimodule(Centi) deriveLeftSemimodule(Milli) deriveLeftSemimodule(Micro) deriveLeftSemimodule(Nano) deriveLeftSemimodule(Pico) deriveLeftSemimodule(Float) deriveLeftSemimodule(Double) deriveLeftSemimodule(CFloat) deriveLeftSemimodule(CDouble) deriveLeftSemimodule((Ratio Integer)) deriveLeftSemimodule((Ratio Natural)) ------------------------------------------------------------------------------- -- Instances ------------------------------------------------------------------------------- instance Semiring r => RightSemimodule r () where rscale _ = const () instance (Additive-Monoid) a => RightSemimodule () a where rscale _ = id instance (Additive-Monoid) a => RightSemimodule Natural a where rscale r a = unAdditive $ mreplicate r (Additive a) instance ((Additive-Monoid) a, (Additive-Group) a) => RightSemimodule Integer a where rscale r a = unAdditive $ greplicate r (Additive a) instance RightSemimodule r a => RightSemimodule r (e -> a) where rscale r = fmap (.* r) instance (RightSemimodule r a, RightSemimodule r b) => RightSemimodule r (a, b) where rscale n (a, b) = (a .* n, b .* n) instance (RightSemimodule r a, RightSemimodule r b, RightSemimodule r c) => RightSemimodule r (a, b, c) where rscale n (a, b, c) = (a .* n, b .* n, c .* n) instance Semiring a => RightSemimodule a (Ratio a) where rscale r (x :% y) = (r * x) :% y instance Ring a => RightSemimodule a (Complex a) where rscale r (x :+ y) = (r * x) :+ (r * y) instance Ring a => RightSemimodule (Complex a) (Complex a) where rscale = (*) #define deriveRightSemimodule(ty) \ instance RightSemimodule ty ty where { \ rscale = (*) \ ; {-# INLINE rscale #-} \ } deriveRightSemimodule(Bool) deriveRightSemimodule(Int) deriveRightSemimodule(Int8) deriveRightSemimodule(Int16) deriveRightSemimodule(Int32) deriveRightSemimodule(Int64) deriveRightSemimodule(Word) deriveRightSemimodule(Word8) deriveRightSemimodule(Word16) deriveRightSemimodule(Word32) deriveRightSemimodule(Word64) deriveRightSemimodule(Uni) deriveRightSemimodule(Deci) deriveRightSemimodule(Centi) deriveRightSemimodule(Milli) deriveRightSemimodule(Micro) deriveRightSemimodule(Nano) deriveRightSemimodule(Pico) deriveRightSemimodule(Float) deriveRightSemimodule(Double) deriveRightSemimodule(CFloat) deriveRightSemimodule(CDouble) deriveRightSemimodule((Ratio Integer)) deriveRightSemimodule((Ratio Natural)) instance Semiring r => Bisemimodule r r () instance Bisemimodule r r a => Bisemimodule r r (e -> a) instance (Bisemimodule r r a, Bisemimodule r r b) => Bisemimodule r r (a, b) instance (Bisemimodule r r a, Bisemimodule r r b, Bisemimodule r r c) => Bisemimodule r r (a, b, c) instance Semiring a => Bisemimodule a a (Ratio a) instance Ring a => Bisemimodule a a (Complex a) instance Ring a => Bisemimodule (Complex a) (Complex a) (Complex a) #define deriveBisemimodule(ty) \ instance Bisemimodule ty ty ty \ deriveBisemimodule(Bool) deriveBisemimodule(Int) deriveBisemimodule(Int8) deriveBisemimodule(Int16) deriveBisemimodule(Int32) deriveBisemimodule(Int64) deriveBisemimodule(Word) deriveBisemimodule(Word8) deriveBisemimodule(Word16) deriveBisemimodule(Word32) deriveBisemimodule(Word64) deriveBisemimodule(Uni) deriveBisemimodule(Deci) deriveBisemimodule(Centi) deriveBisemimodule(Milli) deriveBisemimodule(Micro) deriveBisemimodule(Nano) deriveBisemimodule(Pico) deriveBisemimodule(Float) deriveBisemimodule(Double) deriveBisemimodule(CFloat) deriveBisemimodule(CDouble) deriveBisemimodule((Ratio Integer)) deriveBisemimodule((Ratio Natural))