module Examples.PTS where import Data.Fin (f0, f1) import PTS import Rebound (Nat (S), appearsFree, idE, s1, snat, strengthenRec, zeroE) import Rebound.Bind.PatN import Test.Tasty import Test.Tasty.HUnit import Prelude hiding (pi) lam :: Exp n -> Exp (S n) -> Exp n lam tTy t = Lam tTy (bind1 t) pi :: Exp n -> Exp (S n) -> Exp n pi tTy t = Pi tTy (bind1 t) instance Eq Err where _ == _ = False all :: TestTree all = testGroup "PTS" [ testCase "Is f0 free in t00?" $ appearsFree f0 t00 @?= True, testCase "Is f1 free in t00?" $ appearsFree f1 t00 @?= False, testCase "Weaken t00 by 1" $ weaken' s1 t00 @?= App (Var f0) (Var f0), testCase "Strengthen t00 by 1/1" $ strengthenRec s1 s1 snat t00 @?= Just (App (Var f0) (Var f0)), testCase "Strengthen t01 by 1/1" $ strengthenRec s1 s1 snat t01 @?= Nothing, testCase "Pretty-print t0" $ show t0 @?= "λ *. 0", testCase "Pretty-print t1" $ show t1 @?= "λ *. λ *. 1 ((λ *. 0) 0)", testCase "Pretty-print tyid" $ show tyid @?= "Pi *. 0 -> 1", testCase "Pretty-print tmid" $ show tmid @?= "λ *. λ 0. 0", testCase "Eval t1" $ eval t1 @?= lam Star (lam Star (Var f1 `App` (lam Star (Var f0) `App` Var f0))), testCase "Eval application" $ eval (t1 `App` t0) @?= lam Star (lam Star (Var f0) `App` (lam Star (Var f0) `App` Var f0)), testCase "Step application" $ step (t1 `App` t0) @?= Just (lam Star (lam Star (Var f0) `App` (lam Star (Var f0) `App` Var f0))), testCase "Normalize t1" $ nf t1 @?= lam Star (lam Star (Var f1 `App` Var f0)), testCase "Normalize application" $ nf (t1 `App` t0) @?= lam Star (Var f0), testCase "EvalEnv t1" $ evalEnv idE t1 @?= lam Star (lam Star (Var f1 `App` (lam Star (Var f0) `App` Var f0))), testCase "Type tmid" $ inferType zeroE tmid @?= Right (pi Star $ pi (Var f0) (Var f1)), testCase "Type application" $ inferType zeroE (tmid `App` tyid) @?= Right (pi (pi Star (pi (Var f0) (Var f1))) (pi Star (pi (Var f0) (Var f1)))) ]