// Copyright 2007 The RE2 Authors. All Rights Reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Compiled representation of regular expressions. // See regexp.h for the Regexp class, which represents a regular // expression symbolically. #ifndef RE2_PROG_H__ #define RE2_PROG_H__ #include "util/util.h" #include "re2/re2.h" namespace re2 { // Simple fixed-size bitmap. template class Bitmap { public: Bitmap() { Reset(); } int Size() { return Bits; } void Reset() { for (int i = 0; i < Words; i++) w_[i] = 0; } bool Get(int k) const { return w_[k >> WordLog] & (1<<(k & 31)); } void Set(int k) { w_[k >> WordLog] |= 1<<(k & 31); } void Clear(int k) { w_[k >> WordLog] &= ~(1<<(k & 31)); } uint32 Word(int i) const { return w_[i]; } private: static const int WordLog = 5; static const int Words = (Bits+31)/32; uint32 w_[Words]; DISALLOW_EVIL_CONSTRUCTORS(Bitmap); }; // Opcodes for Inst enum InstOp { kInstAlt = 0, // choose between out_ and out1_ kInstAltMatch, // Alt: out_ is [00-FF] and back, out1_ is match; or vice versa. kInstByteRange, // next (possible case-folded) byte must be in [lo_, hi_] kInstCapture, // capturing parenthesis number cap_ kInstEmptyWidth, // empty-width special (^ $ ...); bit(s) set in empty_ kInstMatch, // found a match! kInstNop, // no-op; occasionally unavoidable kInstFail, // never match; occasionally unavoidable }; // Bit flags for empty-width specials enum EmptyOp { kEmptyBeginLine = 1<<0, // ^ - beginning of line kEmptyEndLine = 1<<1, // $ - end of line kEmptyBeginText = 1<<2, // \A - beginning of text kEmptyEndText = 1<<3, // \z - end of text kEmptyWordBoundary = 1<<4, // \b - word boundary kEmptyNonWordBoundary = 1<<5, // \B - not \b kEmptyAllFlags = (1<<6)-1, }; class Regexp; class DFA; struct OneState; // Compiled form of regexp program. class Prog { public: Prog(); ~Prog(); // Single instruction in regexp program. class Inst { public: Inst() : out_opcode_(0), out1_(0) { } // Constructors per opcode void InitAlt(uint32 out, uint32 out1); void InitByteRange(int lo, int hi, int foldcase, uint32 out); void InitCapture(int cap, uint32 out); void InitEmptyWidth(EmptyOp empty, uint32 out); void InitMatch(int id); void InitNop(uint32 out); void InitFail(); // Getters int id(Prog* p) { return this - p->inst_; } InstOp opcode() { return static_cast(out_opcode_&7); } int out() { return out_opcode_>>3; } int out1() { DCHECK(opcode() == kInstAlt || opcode() == kInstAltMatch); return out1_; } int cap() { DCHECK_EQ(opcode(), kInstCapture); return cap_; } int lo() { DCHECK_EQ(opcode(), kInstByteRange); return lo_; } int hi() { DCHECK_EQ(opcode(), kInstByteRange); return hi_; } int foldcase() { DCHECK_EQ(opcode(), kInstByteRange); return foldcase_; } int match_id() { DCHECK_EQ(opcode(), kInstMatch); return match_id_; } EmptyOp empty() { DCHECK_EQ(opcode(), kInstEmptyWidth); return empty_; } bool greedy(Prog *p) { DCHECK_EQ(opcode(), kInstAltMatch); return p->inst(out())->opcode() == kInstByteRange; } // Does this inst (an kInstByteRange) match c? inline bool Matches(int c) { DCHECK_EQ(opcode(), kInstByteRange); if (foldcase_ && 'A' <= c && c <= 'Z') c += 'a' - 'A'; return lo_ <= c && c <= hi_; } // Returns string representation for debugging. string Dump(); // Maximum instruction id. // (Must fit in out_opcode_, and PatchList steals another bit.) static const int kMaxInst = (1<<28) - 1; private: void set_opcode(InstOp opcode) { out_opcode_ = (out()<<3) | opcode; } void set_out(int out) { out_opcode_ = (out<<3) | opcode(); } void set_out_opcode(int out, InstOp opcode) { out_opcode_ = (out<<3) | opcode; } uint32 out_opcode_; // 29 bits of out, 3 (low) bits opcode union { // additional instruction arguments: uint32 out1_; // opcode == kInstAlt // alternate next instruction int32 cap_; // opcode == kInstCapture // Index of capture register (holds text // position recorded by capturing parentheses). // For \n (the submatch for the nth parentheses), // the left parenthesis captures into register 2*n // and the right one captures into register 2*n+1. int32 match_id_; // opcode == kInstMatch // Match ID to identify this match (for re2::Set). struct { // opcode == kInstByteRange uint8 lo_; // byte range is lo_-hi_ inclusive uint8 hi_; // uint8 foldcase_; // convert A-Z to a-z before checking range. }; EmptyOp empty_; // opcode == kInstEmptyWidth // empty_ is bitwise OR of kEmpty* flags above. }; friend class Compiler; friend struct PatchList; friend class Prog; DISALLOW_EVIL_CONSTRUCTORS(Inst); }; // Whether to anchor the search. enum Anchor { kUnanchored, // match anywhere kAnchored, // match only starting at beginning of text }; // Kind of match to look for (for anchor != kFullMatch) // // kLongestMatch mode finds the overall longest // match but still makes its submatch choices the way // Perl would, not in the way prescribed by POSIX. // The POSIX rules are much more expensive to implement, // and no one has needed them. // // kFullMatch is not strictly necessary -- we could use // kLongestMatch and then check the length of the match -- but // the matching code can run faster if it knows to consider only // full matches. enum MatchKind { kFirstMatch, // like Perl, PCRE kLongestMatch, // like egrep or POSIX kFullMatch, // match only entire text; implies anchor==kAnchored kManyMatch // for SearchDFA, records set of matches }; Inst *inst(int id) { return &inst_[id]; } int start() { return start_; } int start_unanchored() { return start_unanchored_; } void set_start(int start) { start_ = start; } void set_start_unanchored(int start) { start_unanchored_ = start; } int64 size() { return size_; } bool reversed() { return reversed_; } void set_reversed(bool reversed) { reversed_ = reversed; } int64 byte_inst_count() { return byte_inst_count_; } const Bitmap<256>& byterange() { return byterange_; } void set_dfa_mem(int64 dfa_mem) { dfa_mem_ = dfa_mem; } int64 dfa_mem() { return dfa_mem_; } int flags() { return flags_; } void set_flags(int flags) { flags_ = flags; } bool anchor_start() { return anchor_start_; } void set_anchor_start(bool b) { anchor_start_ = b; } bool anchor_end() { return anchor_end_; } void set_anchor_end(bool b) { anchor_end_ = b; } int bytemap_range() { return bytemap_range_; } const uint8* bytemap() { return bytemap_; } // Returns string representation of program for debugging. string Dump(); string DumpUnanchored(); // Record that at some point in the prog, the bytes in the range // lo-hi (inclusive) are treated as different from bytes outside the range. // Tracking this lets the DFA collapse commonly-treated byte ranges // when recording state pointers, greatly reducing its memory footprint. void MarkByteRange(int lo, int hi); // Returns the set of kEmpty flags that are in effect at // position p within context. static uint32 EmptyFlags(const StringPiece& context, const char* p); // Returns whether byte c is a word character: ASCII only. // Used by the implementation of \b and \B. // This is not right for Unicode, but: // - it's hard to get right in a byte-at-a-time matching world // (the DFA has only one-byte lookahead). // - even if the lookahead were possible, the Progs would be huge. // This crude approximation is the same one PCRE uses. static bool IsWordChar(uint8 c) { return ('A' <= c && c <= 'Z') || ('a' <= c && c <= 'z') || ('0' <= c && c <= '9') || c == '_'; } // Execution engines. They all search for the regexp (run the prog) // in text, which is in the larger context (used for ^ $ \b etc). // Anchor and kind control the kind of search. // Returns true if match found, false if not. // If match found, fills match[0..nmatch-1] with submatch info. // match[0] is overall match, match[1] is first set of parens, etc. // If a particular submatch is not matched during the regexp match, // it is set to NULL. // // Matching text == StringPiece(NULL, 0) is treated as any other empty // string, but note that on return, it will not be possible to distinguish // submatches that matched that empty string from submatches that didn't // match anything. Either way, match[i] == NULL. // Search using NFA: can find submatches but kind of slow. bool SearchNFA(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match, int nmatch); // Search using DFA: much faster than NFA but only finds // end of match and can use a lot more memory. // Returns whether a match was found. // If the DFA runs out of memory, sets *failed to true and returns false. // If matches != NULL and kind == kManyMatch and there is a match, // SearchDFA fills matches with the match IDs of the final matching state. bool SearchDFA(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match0, bool* failed, vector* matches); // Build the entire DFA for the given match kind. FOR TESTING ONLY. // Usually the DFA is built out incrementally, as needed, which // avoids lots of unnecessary work. This function is useful only // for testing purposes. Returns number of states. int BuildEntireDFA(MatchKind kind); // Compute byte map. void ComputeByteMap(); // Run peep-hole optimizer on program. void Optimize(); // One-pass NFA: only correct if IsOnePass() is true, // but much faster than NFA (competitive with PCRE) // for those expressions. bool IsOnePass(); bool SearchOnePass(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match, int nmatch); // Bit-state backtracking. Fast on small cases but uses memory // proportional to the product of the program size and the text size. bool SearchBitState(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match, int nmatch); static const int kMaxOnePassCapture = 5; // $0 through $4 // Backtracking search: the gold standard against which the other // implementations are checked. FOR TESTING ONLY. // It allocates a ton of memory to avoid running forever. // It is also recursive, so can't use in production (will overflow stacks). // The name "Unsafe" here is supposed to be a flag that // you should not be using this function. bool UnsafeSearchBacktrack(const StringPiece& text, const StringPiece& context, Anchor anchor, MatchKind kind, StringPiece* match, int nmatch); // Computes range for any strings matching regexp. The min and max can in // some cases be arbitrarily precise, so the caller gets to specify the // maximum desired length of string returned. // // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any // string s that is an anchored match for this regexp satisfies // min <= s && s <= max. // // Note that PossibleMatchRange() will only consider the first copy of an // infinitely repeated element (i.e., any regexp element followed by a '*' or // '+' operator). Regexps with "{N}" constructions are not affected, as those // do not compile down to infinite repetitions. // // Returns true on success, false on error. bool PossibleMatchRange(string* min, string* max, int maxlen); // Compiles a collection of regexps to Prog. Each regexp will have // its own Match instruction recording the index in the vector. static Prog* CompileSet(const RE2::Options& options, RE2::Anchor anchor, Regexp* re); private: friend class Compiler; DFA* GetDFA(MatchKind kind); bool anchor_start_; // regexp has explicit start anchor bool anchor_end_; // regexp has explicit end anchor bool reversed_; // whether program runs backward over input bool did_onepass_; // has IsOnePass been called? int start_; // entry point for program int start_unanchored_; // unanchored entry point for program int size_; // number of instructions int byte_inst_count_; // number of kInstByteRange instructions int bytemap_range_; // bytemap_[x] < bytemap_range_ int flags_; // regexp parse flags int onepass_statesize_; // byte size of each OneState* node Inst* inst_; // pointer to instruction array Mutex dfa_mutex_; // Protects dfa_first_, dfa_longest_ DFA* volatile dfa_first_; // DFA cached for kFirstMatch DFA* volatile dfa_longest_; // DFA cached for kLongestMatch and kFullMatch int64 dfa_mem_; // Maximum memory for DFAs. void (*delete_dfa_)(DFA* dfa); Bitmap<256> byterange_; // byterange.Get(x) true if x ends a // commonly-treated byte range. uint8 bytemap_[256]; // map from input bytes to byte classes uint8 *unbytemap_; // bytemap_[unbytemap_[x]] == x uint8* onepass_nodes_; // data for OnePass nodes OneState* onepass_start_; // start node for OnePass program DISALLOW_EVIL_CONSTRUCTORS(Prog); }; } // namespace re2 #endif // RE2_PROG_H__