{-# LANGUAGE DoAndIfThenElse #-} -- | A Quipper library for synthesizing Clifford+/T/ circuits directly -- from a matrix description or Euler angle description of a unitary -- operator. This library provides both exact and approximate -- synthesis. module Quipper.Libraries.Synthesis where import Quipper import Quipper.Internal import Quantum.Synthesis.CliffordT import Quantum.Synthesis.MultiQubitSynthesis import Quantum.Synthesis.Ring import Quantum.Synthesis.Matrix import Quantum.Synthesis.Newsynth import Quantum.Synthesis.SymReal import Quantum.Synthesis.EulerAngles import Quipper.Utils.Auxiliary (boollist_of_int_bh) import Control.Monad (when) import Data.Bits (xor, (.&.)) import System.Random import Text.Printf -- ---------------------------------------------------------------------- -- * Precision -- | A type to measure precision. Precision is expressed as a number -- /b/ of bits, i.e., binary digits, so that ε = 2[sup −/b/]. type Precision = Double -- | Binary digits, as a unit of precision. For example, the following -- specifies a precision of 20 binary digits: -- -- > prec = 20 * bits bits :: Precision bits = 1 -- | Decimal digits, as a unit of precision. For example, the -- following specifies a precision of 30 decimal digits: -- -- > prec = 30 * digits digits :: Precision digits = logBase 2 10 -- ---------------------------------------------------------------------- -- * Phase -- | A boolean flag indicating whether to respect global phases -- during circuit synthesis ('True') or disregard them ('False'). type KeepPhase = Bool -- ---------------------------------------------------------------------- -- * Auxiliary functions -- | Apply a gate (from the type 'Gate' of Clifford+/T/ operators) to -- the given 'Qubit'. apply_gate_at :: Gate -> Qubit -> Circ () apply_gate_at X q = do gate_X_at q apply_gate_at Y q = do gate_Y_at q apply_gate_at Z q = do gate_Z_at q apply_gate_at H q = do hadamard_at q apply_gate_at S q = do gate_S_at q apply_gate_at T q = do gate_T_at q apply_gate_at E q = do gate_E_at q apply_gate_at W q = do gate_omega_at q -- | Apply a gate list (from the type 'Gate' of Clifford+/T/ -- operators) to the given 'Qubit'. -- -- Note: the operators in the list are applied right-to-left, i.e., -- the gate list is assumed given in matrix multiplication order, but -- are applied in circuit order. apply_gates_at :: [Gate] -> Qubit -> Circ () apply_gates_at gates q = do sequence_ [ apply_gate_at g q | g <- reverse gates ] -- | Like 'apply_gates_at', but apply the same list of gates to two -- qubits in parallel. apply_gates2_at :: [Gate] -> Qubit -> Qubit -> Circ () apply_gates2_at gates q1 q2 = do sequence_ [ do apply_gate_at g q1 apply_gate_at g q2 | g <- reverse gates ] -- | Input two indices /i/ and /j/, a list of qubits /qlist/, and an -- imperative-style single-qubit gate /U/. Apply the two-level -- operator /U/[sub /i/,/j/] to /qlist/. Intended usage: -- -- > twolevel i j qlist gate_U_at -- -- The qubits in /qlist/ are ordered lexicographically left-to-right, -- e.g., [|00〉, |01〉, |10〉, |11〉]. -- -- This function implements an improved version of Gray codes. twolevel :: Index -> Index -> [Qubit] -> (Qubit -> Circ ()) -> Circ () twolevel i j qlist body = aux l1 l2 qlist where n = length qlist l1 = boollist_of_int_bh n i l2 = boollist_of_int_bh n j aux [] [] [] = error "twolevel: i=j" aux (h1:t1) (h2:t2) (q:qs) | h1 == h2 = with_controls (q .==. h1) $ do aux t1 t2 qs | h1 == True = with_basis_change (qnot_at q) $ do aux2 t1 t2 q qs | otherwise = aux2 t1 t2 q qs aux _ _ _ = error "twolevel: internal error 1" -- not reached aux2 [] [] q [] = body q aux2 (h1:t1) (h2:t2) q0 (q:qs) | h1 == h2 = with_controls (q .==. h1) $ do aux2 t1 t2 q0 qs | otherwise = with_basis_change (qnot_at q `controlled` q0) $ do with_controls (q .==. h1) $ do aux2 t1 t2 q0 qs aux2 _ _ _ _ = error "twolevel: internal error 2" -- not reached -- | Apply a /T/[sup /m/] gate. This gate is decomposed into /Z/, /S/, -- /S/[sup †], /T/, and /T/[sup †] gates. gate_T_power_at :: Int -> Qubit -> Circ () gate_T_power_at 0 q = do return () gate_T_power_at 1 q = do gate_T_at q gate_T_power_at 2 q = do gate_S_at q gate_T_power_at 3 q = do gate_S_at q gate_T_at q gate_T_power_at 4 q = do gate_Z_at q gate_T_power_at 5 q = do gate_Z_at q gate_T_at q gate_T_power_at 6 q = do gate_S_inv_at q gate_T_power_at 7 q = do gate_T_inv_at q gate_T_power_at m q = gate_T_power_at (m `mod` 8) q -- | Apply a 'TwoLevel' gate to the given list of qubits. -- The qubits in /qlist/ are ordered lexicographically left-to-right, -- e.g., [|00〉, |01〉, |10〉, |11〉]. apply_twolevel_at :: TwoLevel -> [Qubit] -> Circ () apply_twolevel_at (TL_X i j) qlist = twolevel i j qlist $ \q -> do gate_X_at q apply_twolevel_at (TL_H i j) qlist = twolevel i j qlist $ \q -> do hadamard_at q apply_twolevel_at (TL_T m i j) qlist | m `mod` 8 == 0 = return () | otherwise = twolevel i j qlist $ \q -> do gate_T_power_at m q apply_twolevel_at (TL_omega m i) qlist | m' == 0 = do return () | qlist == [] = do global_phase (fromIntegral m' * 0.25) | otherwise = apply_twolevel_at (TL_T m j i) qlist where j = if i == 0 then 1 else i .&. (i-1) m' = m `mod` 8 -- | Apply a list of 'TwoLevel' gates to the given list of -- qubits. -- -- The qubits in /qlist/ are ordered lexicographically left-to-right, -- e.g., [|00〉, |01〉, |10〉, |11〉]. -- -- Note: the operators in the list are applied right-to-left, i.e., -- the gate list is assumed given in matrix multiplication order, but -- are applied in circuit order. -- Implementation note: this could be improved by combining -- consecutive two-level gates if they share the same i and j apply_twolevels_at :: [TwoLevel] -> [Qubit] -> Circ () apply_twolevels_at ops qlist = sequence_ [ apply_twolevel_at g qlist | g <- reverse ops ] -- | Like 'apply_twolevel_at', but use the alternate generators for -- two-level gates. apply_twolevel_alt_at :: TwoLevelAlt -> [Qubit] -> Circ () apply_twolevel_alt_at (TL_iX j l) qlist = do twolevel j l qlist $ \q -> do gate_iX_at q apply_twolevel_alt_at (TL_TiHT m j l) qlist = do twolevel j l qlist $ \q -> do let basischange = do gate_T_power_at m q gate_S_at q gate_H_at q gate_T_at q with_basis_change basischange $ do gate_iX_at q apply_twolevel_alt_at (TL_W m j l) qlist | m' == 0 = do return () | otherwise = do twolevel j l qlist $ \q -> do gate_iX_at q let basischange = do gate_T_power_at m' q with_basis_change basischange $ do gate_iX_inv_at q where m' = m `mod` 8 apply_twolevel_alt_at (TL_omega_alt m j) qlist | m' == 0 = do return () | qlist == [] = do global_phase (fromIntegral m' * 0.25) | otherwise = do apply_twolevel_at (TL_T m l j) qlist where l = if j == 0 then 1 else j .&. (j-1) m' = m `mod` 8 -- | Apply a list of 'TwoLevelAlt' gates to the given list of -- qubits. -- -- The qubits in /qlist/ are ordered lexicographically left-to-right, -- e.g., [|00〉, |01〉, |10〉, |11〉]. -- -- Note: the operators in the list are applied right-to-left, i.e., -- the gate list is assumed given in matrix multiplication order, but -- are applied in circuit order. -- Implementation note: this could be improved by combining -- consecutive two-level gates if they share the same i and j apply_twolevels_alt_at :: [TwoLevelAlt] -> [Qubit] -> Circ () apply_twolevels_alt_at ops qlist = sequence_ [ apply_twolevel_alt_at g qlist | g <- reverse ops ] -- ---------------------------------------------------------------------- -- * Single-qubit exact synthesis -- | Decompose the given operator exactly into a single-qubit -- Clifford+/T/ circuit. The operator must be given in one of the -- available exact formats, i.e., any instance of the 'ToGates' class. -- Typical instances are: -- -- * 'U2' 'DOmega': a 2×2 unitary operator with entries from the ring -- [bold D][ω] = ℤ[1\/√2, /i/]; -- -- * 'SO3' 'DRootTwo': a 3×3 Bloch sphere operator with entries from the -- ring ℤ[1\/√2]. In this last case, the operator will be synthesized -- up to an unspecified global phase. exact_synthesis1 :: (ToGates a) => a -> Qubit -> Circ Qubit exact_synthesis1 op q = do comment_with_label "ENTER: exact_synthesis1" q "q" apply_gates_at gates q comment_with_label "EXIT: exact_synthesis1" q "q" return q where gates = convert (normalize op) :: [Gate] -- ---------------------------------------------------------------------- -- * Multi-qubit exact synthesis -- | Decompose the given operator exactly into a Clifford+/T/ circuit. -- The operator must be given as an /n/×/n/-matrix with coefficients -- in a ring that is an instance of the 'ToQOmega' class. A typical -- example of such a ring is 'DOmega'. -- -- If this function is applied to a list of /m/ qubits, then we must -- have /n/ ≤ 2[sup /m/]. -- -- The qubits in /qlist/ are ordered lexicographically left-to-right, -- e.g., [|00〉, |01〉, |10〉, |11〉]. -- -- The generated circuit contains no ancillas, but may contain -- multi-controlled gates whose decomposition into Clifford+/T/ -- generators requires ancillas. exact_synthesis :: (ToQOmega a, Nat n) => Matrix n n a -> [Qubit] -> Circ [Qubit] exact_synthesis op qlist = do comment_with_label "ENTER: exact_synthesis" qlist "q" apply_twolevels_at twolevels qlist comment_with_label "EXIT: exact_synthesis" qlist "q" return qlist where op_DOmega = matrix_map (to_dyadic . toQOmega) op twolevels = synthesis_nqubit op_DOmega -- | Like 'exact_synthesis', but use the alternate algorithm from -- Section 6 of Giles-Selinger. This means all but at most one of the -- generated multi-controlled gates have determinant 1, which means -- they can be further decomposed without ancillas. exact_synthesis_alt :: (ToQOmega a, Nat n) => Matrix n n a -> [Qubit] -> Circ [Qubit] exact_synthesis_alt op qlist = do comment_with_label "ENTER: exact_synthesis_alt" qlist "q" apply_twolevels_alt_at twolevels qlist comment_with_label "EXIT: exact_synthesis_alt" qlist "q" return qlist where op_DOmega = matrix_map (to_dyadic . toQOmega) op twolevels = synthesis_nqubit_alt op_DOmega -- ---------------------------------------------------------------------- -- * Single-qubit approximate synthesis -- ---------------------------------------------------------------------- -- ** /z/-Rotations -- | Decompose an /R/[sub /z/]\(θ) = [exp −/i/θ/Z/\/2] gate into a -- single-qubit Clifford+/T/ circuit up to the given precision. -- -- \[image Rz.png] -- -- The parameters are: -- -- * a precision /b/ ≥ 0; -- -- * an angle θ, given as a 'SymReal' value; -- -- * a source of randomness /g/. approximate_synthesis_zrot :: (RandomGen g) => Precision -> SymReal -> g -> Qubit -> Circ Qubit approximate_synthesis_zrot b theta g q = do comment_with_label (printf "ENTER: approximate_synthesis_zrot (b=%.2f, theta=%s)" b (show theta)) q "q" q <- without_comments $ do exact_synthesis1 op q comment_with_label "EXIT: approximate_synthesis_zrot" q "q" return q where op = newsynth b theta g -- ---------------------------------------------------------------------- -- ** Global phase gates -- | Construct a Clifford+/T/ circuit (with no inputs and outputs) -- that approximates a scalar global phase gate [exp /i/θ] up to the -- given precision. The parameters are: -- -- * a flag /keepphase/ to indicate whether global phase should be -- respected. (Note that if this is set to 'False', then this function -- is just a no-op); -- -- * a precision /b/ ≥ 0; -- -- * an angle θ, given as a 'SymReal' value; -- -- * a source of randomness /g/. -- -- We use the following decomposition: -- -- \[image phase.png] approximate_synthesis_phase :: (RandomGen g) => KeepPhase -> Precision -> SymReal -> g -> Circ () approximate_synthesis_phase False b theta g = do return () approximate_synthesis_phase True b theta g = do comment (printf "ENTER: approximate_synthesis_phase (b=%.2f, theta=%s)" b (show theta)) when (gates /= []) $ do q <- qinit 0 apply_gates_at gates q qterm 0 q comment "EXIT: approximate_synthesis_phase" where op = newsynth b (-2*theta) g gates = convert (normalize op) :: [Gate] -- ---------------------------------------------------------------------- -- ** /U/(2) from Euler angles -- | Decompose the operator -- -- * /U/ = [exp /i/α] R[sub /z/]\(β) R[sub /x/]\(γ) R[sub /z/]\(δ) -- -- into the Clifford+/T/ gate base, up to the given precision. -- The parameters are: -- -- * a flag /keepphase/ to indicate whether global phase should be -- respected. If this is 'False', the angle α is disregarded; -- -- * a precision /b/ ≥ 0; -- -- * a tuple of Euler angles (α, β, γ, δ), given as 'SymReal' values; -- -- * a source of randomness /g/. approximate_synthesis_euler :: (RandomGen g) => KeepPhase -> Precision -> (SymReal, SymReal, SymReal, SymReal) -> g -> Qubit -> Circ Qubit approximate_synthesis_euler keepphase b (alpha, beta, gamma, delta) g q = do comment_with_label (printf "ENTER: approximate_synthesis_euler (b=%.2f, alpha=%s, beta=%s, gamma=%s, delta=%s, keepphase=%s)" b (show alpha) (show beta) (show gamma) (show delta) (show keepphase)) q "q" without_comments $ do exact_synthesis1 (op_beta * u2_H * op_gamma * u2_H * op_delta) q approximate_synthesis_phase keepphase b' alpha g1 comment_with_label "EXIT: approximate_synthesis_euler" q "q" return q where op_beta = newsynth b' beta g2 op_gamma = newsynth b' gamma g3 op_delta = newsynth b' delta g4 (g', g'') = split g (g1, g2) = split g' (g3, g4) = split g'' b' = b + 2 -- ε' = ε / 4 -- ---------------------------------------------------------------------- -- ** /U/(2) from matrix -- | Decompose a single-qubit unitary gate /U/ into the Clifford+/T/ -- gate base, up to the given precision, provided that det /U/ = 1. -- The parameters are: -- -- * a flag /keepphase/ to indicate whether global phase should be -- respected; -- -- * a precision /b/ ≥ 0; -- -- * a 2×2 complex matrix, with entries expressed as 'Cplx' 'SymReal' values; -- -- * a source of randomness /g/. approximate_synthesis_u2 :: (RandomGen g) => KeepPhase -> Precision -> U2 (Cplx SymReal) -> g -> Qubit -> Circ Qubit approximate_synthesis_u2 keepphase b op g q = do comment_with_label (printf "ENTER: approximate_synthesis_u2 (b=%.2f, op=%s, keepphase=%s)" b (show op) (show keepphase)) q "q" q <- without_comments $ do approximate_synthesis_euler keepphase b (alpha, beta, gamma, delta) g q comment_with_label "EXIT: approximate_synthesis_u2" q "q" return q where (alpha, beta, gamma, delta) = euler_angles op -- ---------------------------------------------------------------------- -- ** Controlled gates -- | Decompose a controlled /R/[sub /z/]\(θ) = [exp −/i/θ/Z/\/2] gate -- into a single-qubit Clifford+/T/ circuit up to the given -- precision. The parameters are as for 'approximate_synthesis_phase'. -- The first input is the target qubit, and the second input the -- control. -- -- We use the following decomposition. It has lower /T/-count than the -- alternatives and makes good use of parallelism. Since it uses the -- same rotation twice, only a single run of the synthesis algorithm -- is required. -- -- \[image controlled-zrot.png] approximate_synthesis_zrot_ctrl :: (RandomGen g) => Precision -> SymReal -> g -> Qubit -> Qubit -> Circ Qubit approximate_synthesis_zrot_ctrl b theta g q1 c2 = do comment_with_label (printf "ENTER: approximate_synthesis_zrot_ctrl (b=%.2f, theta=%s)" b (show theta)) (q1,c2) ("q", "c") qnot_at c2 `controlled` q1 .==. False apply_gates2_at gates q1 c2 qnot_at c2 `controlled` q1 .==. False comment_with_label "EXIT: approximate_synthesis_zrot_ctrl" (q1,c2) ("q", "c") return q1 where gates = convert (normalize op) :: [Gate] op = newsynth (b+1) (theta/2) g -- | Decompose a controlled phase gate -- -- \[image controlled_phase.png] -- -- into the Clifford+/T/ gate base. The parameters are as for -- 'approximate_synthesis_phase'. -- -- We use the following decomposition. It has lower /T/-count than the -- alternatives and makes good use of parallelism. Since it uses the -- same rotation twice, only a single run of the synthesis algorithm -- is required. -- -- \[image controlled-phase-decomp.png] -- -- If the 'KeepPhase' flag is set, respect global phase; otherwise, -- disregard it. approximate_synthesis_phase_ctrl :: (RandomGen g) => KeepPhase -> Precision -> SymReal -> g -> Qubit -> Circ Qubit approximate_synthesis_phase_ctrl keepphase b theta g q1 = do comment_with_label (printf "ENTER: approximate_synthesis_phase_ctrl (b=%.2f, theta=%s keepphase=%s)" b (show theta) (show keepphase)) q1 "q" if keepphase then do q2 <- qinit True apply_gates2_at gates q2 q1 qterm True q2 else do approximate_synthesis_zrot b theta g q1 return () comment_with_label "EXIT: approximate_synthesis_phase_ctrl" q1 "q" return q1 where gates = convert (normalize op) :: [Gate] op = newsynth (b+1) theta g