{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ < 710 {-# OPTIONS -fcontext-stack=50 #-} #else {-# OPTIONS -freduction-depth=50 #-} #endif -- | This module provides an implementation of the Quantum Walk for -- the Triangle Finding Problem. -- -- The algorithm works by performing a Grover-based quantum walk on -- a larger graph /H/, called the Hamming graph associated to /G/. -- We refer to this part of the algorithm as the /outer/ walk. -- The subroutine used to check whether a triangle has been found -- is itself a quantum walk, the /inner/ walk. -- -- The overall algorithm is parameterized on integers /l/, /n/ and /r/ -- specifying respectively the length /l/ of the integers used by the -- oracle, the number 2[sup /n/] of nodes of /G/ and the size 2[sup /r/] -- of Hamming graph tuples. module Quipper.Algorithms.TF.QWTFP where import Prelude hiding (mapM, mapM_) import Quipper import Quipper.Internal (BType) import Quipper.Libraries.Arith import Quipper.Algorithms.TF.Definitions import Data.IntMap (IntMap, adjust, insert, size) import qualified Data.IntMap as IntMap import Data.Traversable (mapM) import Data.Foldable (mapM_) import Control.Monad (foldM) -- ====================================================================== -- * Main TF algorithm -- | Algorithm 1. Do a quantum walk on the Hamming graph associated with /G/. -- Returns a quadruple /(testTMeasure, wMeasure, TMeasure, EMeasure)/ -- where /wMeasure/ contains a node of the triangle with the -- other two nodes in /TMeasure/. a1_QWTFP :: QWTFP_spec -> Circ (Bit,CNode,IntMap CNode,IntMap (IntMap Bit)) a1_QWTFP oracle@(n,r,edgeOracle,_) = do comment "ENTER: a1_QWTFP" let nn = 2^n let rr = 2^r let rbar = max ((2 * r) `div` 3) 1 let rrbar = 2^rbar let tm = 2^(n - r) let tw = floor $ sqrt $ fromIntegral rr testTEdge <- a2_ZERO False tt <- a3_INITIALIZE (intMap_replicate rr (replicate n False)) i <- a3_INITIALIZE (intm r 0) v <- a3_INITIALIZE (replicate n False) (tt, ee) <- a5_SETUP oracle tt (tt,i,v,ee) <- box_loopM "a1_loop1" tm (tt,i,v,ee) (\(tt,i,v,ee) -> do ((tt,ee),_) <- with_computed_fun (tt,ee) (\(tt,ee) -> a15_TestTriangleEdges oracle tt ee) (\(tt,ee,w,triTestT,triTestTw) -> do phaseFlipUnless (triTestT .==. 0 .&&. triTestTw .==. 0) return ((tt,ee,w,triTestT,triTestTw),())) (tt,i,v,ee) <- box_loopM "a1_loop2" tw (tt,i,v,ee) (\(a,b,c,d) -> a6_QWSH oracle a b c d) return (tt,i,v,ee)) (tt,ee,w,triTestT,triTestTw) <- a15_TestTriangleEdges oracle tt ee testTEdge <- qor testTEdge [(triTestT, True), (triTestTw, True)] testTMeasure <- measure testTEdge wMeasure <- measure w ttMeasure <- measure tt eeMeasure <- measure ee qdiscard (i,v,triTestT,triTestTw) comment_with_label "EXIT: a1_QWTFP" (testTMeasure, wMeasure, ttMeasure, eeMeasure) ("testTMeasure", "wMeasure", "ttMeasure", "eeMeasure") return (testTMeasure, wMeasure, ttMeasure, eeMeasure) -- ====================================================================== -- *Utility subroutines -- | Algorithm 2. -- Initialize the qubits in a register to a specified state. -- Defined using the more generic 'qinit'. a2_ZERO :: QShape a qa ca => a -> Circ qa a2_ZERO b = do comment "ENTER: a2_ZERO" q <- qinit b comment_with_label "EXIT: a2_ZERO" q "q" return q -- | Algorithm 3. -- Initialize to a specified state then apply a Hadamard gate to -- the qubits in a register. a3_INITIALIZE :: QShape a qa ca => a -> Circ qa a3_INITIALIZE reg = do comment "ENTER: a3_INITIALIZE" zreg <- a2_ZERO reg hzreg <- a4_HADAMARD zreg comment_with_label "EXIT: a3_INITIALIZE" hzreg "hzreg" return hzreg -- | Algorithm 4. -- Apply a Hadamard gate to every qubit in the given quantum data. -- Defined using the more generic 'map_hadamard'. a4_HADAMARD :: QData qa => qa -> Circ qa a4_HADAMARD q = do comment_with_label "ENTER: a4_HADAMARD" q "q" q <- map_hadamard q comment_with_label "EXIT: a4_HADAMARD" q "q" return q -- | Algorithm 5. -- Set up the register /ee/ with the edge information -- for the nodes contained in /tt/. a5_SETUP :: QWTFP_spec -> (IntMap QNode) -> Circ (IntMap QNode, IntMap (IntMap Qubit)) a5_SETUP oracle@(n,r,edgeOracle,_) = box "a5" $ \tt -> do comment_with_label "ENTER: a5_SETUP" tt "tt" let rr = 2^r ee <- qinit $ IntMap.fromList [(j,(intMap_replicate j False)) | j <- [0..(rr-1)]] ee <- loop_with_indexM (rr) ee (\k ee -> loop_with_indexM k ee (\j ee -> do edgejk <- edgeOracle (tt ! j) (tt ! k) (ee ! k ! j) ee <- return $ adjust (insert j edgejk) k ee return ee)) comment_with_label "EXIT: a5_SETUP" (tt,ee) ("tt","ee") return (tt, ee) -- ====================================================================== -- ** The outer quantum walk and the standard Qram -- | Algorithm 6. -- Do a quantum walk step on the Hamming graph. a6_QWSH :: QWTFP_spec -> (IntMap QNode) -> QDInt -> QNode -> (IntMap (IntMap Qubit)) -> Circ (IntMap QNode, QDInt, QNode, IntMap (IntMap Qubit)) a6_QWSH oracle@(n,r,edgeOracle,qram) = box "a6" $ \tt i v ee -> do comment_with_label "ENTER: a6_QWSH" (tt, i, v, ee) ("tt", "i", "v", "ee") with_ancilla_init (replicate n False) $ \ttd -> do with_ancilla_init (intMap_replicate (2^r) False) $ \eed -> do (i,v) <- a7_DIFFUSE (i,v) ((tt,i,v,ee,ttd,eed),_) <- with_computed_fun (tt,i,v,ee,ttd,eed) (\(tt,i,v,ee,ttd,eed) -> do (i,tt,ttd) <- qram_fetch qram i tt ttd (i,ee,eed) <- a12_FetchStoreE i ee eed (tt,ttd,eed) <- a13_UPDATE oracle tt ttd eed (i,tt,ttd) <- qram_store qram i tt ttd return (tt,i,v,ee,ttd,eed)) (\(tt,i,v,ee,ttd,eed) -> do (ttd,v) <- a14_SWAP ttd v return ((tt,i,v,ee,ttd,eed),())) comment_with_label "EXIT: a6_QWSH" (tt, i, v, ee) ("tt", "i", "v", "ee") return (tt,i,v,ee) -- | Algorithm 7. -- Diffuse a piece of quantum data, in the Grover search sense of -- reflecting about the average. -- -- Note: relies on @'qshape' q@ corresponding to the “all false” state. a7_DIFFUSE :: (QData qa) => qa -> Circ qa a7_DIFFUSE = box "a7" $ \q -> do comment_with_label "ENTER: a7_DIFFUSE" q "q" q <- a4_HADAMARD q phaseFlipUnless $ q .==. qc_false q q <- a4_HADAMARD q comment_with_label "EXIT: a7_DIFFUSE" q "q" return q -- | Algorithm 8. -- Perform a quantum-addressed fetch operation. -- This fetches the /i/-th element from /tt/ into /ttd/. -- Precondition: /ttd/ = 0. -- -- This could be implemented more efficiently using the qRAM implementation -- in "Quipper.Algorithms.TF.Alternative". a8_FetchT :: (QData qa) => QDInt -> IntMap qa -> qa -> Circ (QDInt, IntMap qa, qa) a8_FetchT = box "a8" $ \i tt ttd -> do comment_with_label "ENTER: a8_FetchT" (i,tt,ttd) ("i","tt","ttd") let r = qdint_length i (i,tt,ttd) <- loop_with_indexM (2^r) (i,tt,ttd) (\j (i,tt,ttd) -> do let ttj = tt ! j (ttj,ttd) <- mapBinary (\q p -> do p <- qnot p `controlled` q .&&. i .==. (fromIntegral j) return (q,p)) (tt ! j) ttd return (i, insert j ttj tt, ttd)) comment_with_label "EXIT: a8_FetchT" (i,tt,ttd) ("i","tt","ttd") return (i,tt,ttd) -- | Algorithm 9. -- Perform a quantum-addressed store operation: -- store /ttd/ into the /i/-th element from /tt/. -- Analogous to 'a8_FetchT'. a9_StoreT :: (QData qa) => QDInt -> IntMap qa -> qa -> Circ (QDInt, IntMap qa, qa) a9_StoreT = box "a9" $ \i tt ttd -> do comment_with_label "ENTER: a9_StoreT" (i,tt,ttd) ("i","tt","ttd") let r = qdint_length i (i,tt,ttd) <- loop_with_indexM (2^r) (i,tt,ttd) (\j (i,tt,ttd) -> do (ttj,ttd) <- mapBinary (\q p -> do q <- qnot q `controlled` p .&&. i .==. (fromIntegral j) return (q,p)) (tt ! j) ttd return (i, insert j ttj tt, ttd)) comment_with_label "EXIT: a9_StoreT" (i,tt,ttd) ("i","tt","ttd") return (i,tt,ttd) -- | Algorithm 10. -- Perform a quantum-addressed swap: -- swap /ttd/ with the /i/-th element of /tt/. -- Analogous to 'a8_FetchT' and 'a9_StoreT'. a10_FetchStoreT :: (QData qa) => QDInt -> IntMap qa -> qa -> Circ (QDInt, IntMap qa, qa) a10_FetchStoreT = box "a10" $ \i tt ttd -> do comment_with_label "ENTER: a10_FetchStoreT" (i,tt,ttd) ("i","tt","ttd") let r = qdint_length i (i,tt,ttd) <- loop_with_indexM (2^r) (i,tt,ttd) (\j (i,tt,ttd) -> do (qq,ttd) <- a14_SWAP (tt ! j) ttd `controlled` i .==. (fromIntegral j) return (i,(insert j qq tt), ttd)) comment_with_label "EXIT: a10_FetchStoreT" (i,tt,ttd) ("i","tt","ttd") return (i,tt,ttd) -- | Algorithm 11. Perform a quantum-addressed fetch operation. This -- is a somewhat specialized addressed fetching operation. a11_FetchE :: QDInt -> IntMap (IntMap Qubit) -> IntMap Qubit -> Circ (QDInt, IntMap (IntMap Qubit), IntMap Qubit) a11_FetchE = box "a11" $ \i qs ps -> do comment_with_label "ENTER: a11_FetchE" (i, qs, ps) ("i", "qs", "ps") let r = qdint_length i (i,qs,ps) <- loop_with_indexM (2^r) (i,qs,ps) (\j (i,qs,ps) -> loop_with_indexM j (i,qs,ps) (\k (i,qs,ps) -> do pk <- qnot (ps ! k) `controlled` (qs ! j ! k) .&&. i .==. (fromIntegral j) ps <- return $ insert k pk ps pj <- qnot (ps ! j) `controlled` (qs ! j ! k) .&&. i .==. (fromIntegral k) ps <- return $ insert j pj ps return (i,qs,ps))) comment_with_label "EXIT: a11_FetchE" (i, qs, ps) ("i", "qs", "ps") return (i,qs,ps) -- | Algorithm 12. -- Perform a quantum-addressed swap. Analogous to 'a11_FetchE'. a12_FetchStoreE :: QDInt -> IntMap (IntMap Qubit) -> IntMap Qubit -> Circ (QDInt, IntMap (IntMap Qubit), IntMap Qubit) a12_FetchStoreE = box "a12" $ \i qs ps -> do comment_with_label "ENTER: a12_FetchStoreE" (i, qs, ps) ("i", "qs", "ps") let r = qdint_length i (i,qs,ps) <- loop_with_indexM (2^r) (i,qs,ps) (\j (i,qs, ps) -> loop_with_indexM j (i,qs, ps) (\k (i,qs, ps) -> do (q,p) <- a14_SWAP (qs ! j ! k) (ps ! k) `controlled` i .==. (fromIntegral j) (qs,ps) <- return (adjust (insert k q) j qs, insert k p ps) (q,p) <- a14_SWAP (qs ! j ! k) (ps ! j) `controlled` i .==. (fromIntegral k) (qs,ps) <- return (adjust (insert k q) j qs, insert j p ps) return (i,qs,ps))) comment_with_label "EXIT: a12_FetchStoreE" (i, qs, ps) ("i", "qs", "ps") return (i,qs,ps) -- | Algorithm 13. -- Given a list of nodes /tt/, a distinguished node /ttd/, -- and a list of bits /eed/, either: -- -- * store the edge information for /(ttd,tt)/ into /eed/, if /eed/ is initially 0; or -- -- * zero /eed/, if it initially holds the edge information. a13_UPDATE :: QWTFP_spec -> IntMap QNode -> QNode -> IntMap Qubit -> Circ (IntMap QNode, QNode, IntMap Qubit) a13_UPDATE oracle@(n,r,edgeOracle,_) = box "a13" $ \tt ttd eed -> do comment_with_label "ENTER: a13_UPDATE" (tt,ttd,eed) ("tt","ttd","eed") (tt,ttd,eed) <- loop_with_indexM (2^r) (tt,ttd,eed) (\j (tt,ttd,eed) -> do e <- edgeOracle (tt ! j) ttd (eed ! j) return (tt,ttd,insert j e eed)) comment_with_label "EXIT: a13_UPDATE" (tt,ttd,eed) ("tt","ttd","eed") return (tt,ttd,eed) -- | Algorithm 14. Swap two registers of equal size. This is a -- generic function and works for any quantum data type. a14_SWAP :: QCData qa => qa -> qa -> Circ (qa, qa) a14_SWAP q r = do comment_with_label "ENTER: a14_SWAP" (q,r) ("q", "r") (q,r) <- swap q r comment_with_label "EXIT: a14_SWAP" (q,r) ("q", "r") return (q,r) -- | The qRAM operations from Algorithms 8–10 wrapped into a 'Qram' object. standard_qram :: Qram standard_qram = Qram { qram_fetch = a8_FetchT, qram_store = a9_StoreT, qram_swap = a10_FetchStoreT } -- ====================================================================== -- ** The inner quantum walk -- | A type to hold the Graph Collision Quantum Walk Registers -- /(tau, iota, sigma, eew, cTri, triTestT)/, used in 'a20_GCQWStep'. type GCQWRegs = (IntMap QDInt, QDInt, QDInt, IntMap Qubit, QDInt, Qubit) -- | Algorithm 15: /TestTriangleEdges/. -- Test whether the nodes /tt/ contain a pair that can be extended to a -- triangle in the graph. Used as the test function in the outer quantum -- walk. Seeks triangles in two different ways: -- -- 1. Entirely within the nodes /tt/. If found, set qubit /triTestT/. -- -- 2. With two vertices from /tt/, a third anywhere in the graph. If found, -- set qubit /triTestTw/, and return the third vertex as /w/. This is -- implemented using an “inner quantum walk” to seek /w/. a15_TestTriangleEdges :: QWTFP_spec -- ^ The ambient oracle. -> IntMap QNode -- ^ /tt/, an /R/-tuple of nodes. -> IntMap (IntMap Qubit) -- ^ /ee/, a cache of the edge information between nodes in /tt/. -> Circ (IntMap QNode, IntMap (IntMap Qubit), QNode, Qubit,Qubit) -- ^ Return /(tt, ee, w, triTestT,triTestTw)/. a15_TestTriangleEdges oracle = box "a15" $ \tt ee -> do comment_with_label "ENTER: a15_TestTriangleEdges" (tt,ee) ("tt","ee") (ee,triTestT) <- a16_TriangleTestT ee (tt,ee,w,triTestT) <- a18_TriangleEdgeSearch oracle tt ee triTestT (tt,ee,w,triTestTw) <- a17_TriangleTestTw oracle tt ee w comment_with_label "EXIT: a15_TestTriangleEdges" (tt,ee,w,triTestT,triTestTw) ("tt","ee","w","triTestT","triTestTw") return (tt,ee,w,triTestT,triTestTw) -- | Algorithm 16: /TriangleTestT ee triTestT/. -- Search exhaustively over the array /ee/ of edge data, seeking a triangle. -- Whenever one is found, flip the qubit /triTestT/. a16_TriangleTestT :: IntMap (IntMap Qubit) -> Circ (IntMap (IntMap Qubit), Qubit) a16_TriangleTestT = box "a16" $ \ee -> do comment_with_label "ENTER: a16_TriangleTestT" ee "ee" let rr = size ee (ee,triTestT) <- with_computed_fun ee (\ee -> do cTri <- qinit (intm (ceiling (logBase 2 (fromIntegral (rr `choose` 3)))) 0) cTri <- foldM (\cTri (i,j,k) -> do cTri <- increment cTri `controlled` (ee ! j ! i) .&&. (ee ! k ! i) .&&. (ee ! k ! j) return cTri) cTri [(i,j,k) | i <- [0..rr-1], j <- [i+1..rr-1], k <- [j+1..rr-1]] return (ee,cTri)) (\(ee,cTri) -> do triTestT <- qinit True triTestT <- qnot triTestT `controlled` cTri .==. 0 return ((ee,cTri),triTestT)) comment_with_label "EXIT: a16_TriangleTestT" (ee,triTestT) ("ee","triTestT") return (ee,triTestT) {-Alternative implementation, using (a lot of) extra ancillas instead of a counter: a16_TriangleTestT :: [[Qubit]] -> Qubit -> Circ ([[Qubit]], Qubit) a16_TriangleTestT ee triTestT = do let rr = length ee ((ee,triTestT),_) <- with_computed_fun (\(ee,triTestT) -> do tests <- mapM (\(i,j,k) -> do t <- a2_ZERO False t <- qnot t `controlled` [(ee !! j !! i),(ee !! k !! i),(ee !! k !! j)] return(t)) [(i,j,k) | i <- [0..rr-1], j <- [i+1..rr-1], k <- [j+1..rr-1]] return (ee,triTestT,tests)) (ee,triTestT) (\(ee,triTestT,tests) -> do triTestT <- qor triTestT (map (\p -> (p,True)) tests) return ((ee,triTestT,tests),())) return (ee,triTestT)-} -- | Algorithm 17: /TriangleTestTw ee triTestTw/. -- Search exhaustively for a pair of nodes in /tt/ that form a triangle with /w/. -- Whenever a triangle found, flip qubit /triTestTw/. a17_TriangleTestTw :: QWTFP_spec -- ^ The ambient oracle. -> IntMap QNode -- ^ /tt/, an /R/-tuple of nodes. -> IntMap (IntMap Qubit) -- ^ /ee/, a cache of the edge data for /T/. -> QNode -- ^ /w/, another node. -> Circ (IntMap QNode, IntMap (IntMap Qubit), QNode, Qubit) -- ^ return /(tt,ee,w,triTestTw)/. a17_TriangleTestTw oracle@(n,r,edgeOracle,_) = box "a17" $ \tt ee w -> do comment_with_label "ENTER: a17_TriangleTestTw" (tt,ee,w) ("tt","ee","w") let rr = size ee with_ancilla_init (intMap_replicate rr False) $ \eed -> do ((tt,ee,w,eed),triTestTw) <- with_computed_fun (tt,ee,w,eed) (\(tt,ee,w,eed) -> do eed <- mapWithKeyM (\k e -> do e <- edgeOracle (tt ! k) w e return e) eed cTri <- qinit (intm (ceiling (logBase 2 (fromIntegral (rr `choose` 2)))) 0) cTri <- foldM (\cTri (i,j) -> increment cTri `controlled` (ee ! j ! i) .&&. (eed ! i) .&&. (eed ! j)) cTri [(i,j) | i <- [0..rr-1], j <- [i+1..rr-1]] return (tt,ee,w,eed,cTri)) (\(tt,ee,w,eed,cTri) -> do triTestTw <- qinit True triTestTw <- qnot triTestTw `controlled` cTri .==. 0 return ((tt,ee,w,eed,cTri),triTestTw)) comment_with_label "EXIT: a17_TriangleTestTw" (tt,ee,w,triTestTw) ("tt","ee","w","triTestTw") return (tt,ee,w,triTestTw) {-Alternative implementation, using (a lot of) extra ancillas instead of a counter: a17_TriangleTestTw oracle@(n,r,edgeOracle) tt ee w triTestTw = do let rr = length ee with_ancilla_list rr $ \eed -> do ((tt,ee,w,triTestTw,eed),_) <- with_computed_fun (\(tt,ee,w,triTestTw,eed) -> do eed <- mapM (\(b,a) -> do b <- edgeOracle (tt !! a) w b return (b)) (zip (eed) [0..rr-1]) tests <- mapM (\(i,j) -> do t <- a2_ZERO False t <- qnot t `controlled` (ee !! j !! i) .&&. (eed !! i) .&&. (eed !! j) return(t)) [(i,j) | i <- [0..rr-1], j <- [i+1..rr-1]] return (tt,ee,w,triTestTw,eed,tests)) (tt,ee,w,triTestTw,eed) (\(tt,ee,w,triTestTw,eed,tests) -> do triTestTw <- qor triTestTw (map (\p -> (p,True)) tests) return ((tt,ee,w,triTestTw,eed,tests),())) return (tt,ee,w,triTestTw)-} -- | Algorithm 18: /TriangleEdgeSearch/. -- Use Grover search to seek a node /w/ that forms a triangle with some pair of -- nodes in /tt/, unless a triangle has already been found (recorded in /triTestT/), -- in which case do nothing. a18_TriangleEdgeSearch :: QWTFP_spec -- ^ The ambient oracle. -> IntMap QNode -- ^ /tt/, an /R/-tuple of nodes. -> IntMap (IntMap Qubit) -- ^ /ee/, a cache of edge data for /R/. -> Qubit -- ^ /triTestT/, test qubit recording if a triangle has already been found. -> Circ (IntMap QNode, IntMap (IntMap Qubit), QNode, Qubit) -- ^ Return /(tt, ee, w, regs)/. a18_TriangleEdgeSearch oracle@(n,r,edgeOracle,_) = box "a18" $ \tt ee triTestT -> do comment_with_label "ENTER: a18_TriangleEdgeSearch" (tt,ee,triTestT) ("tt","ee","triTestT") let nn = 2^n tG = floor (pi/4 *( sqrt ( fromIntegral nn))) w <- a2_ZERO (replicate n False) w <- a4_HADAMARD w box_loopM "a18_loop" tG (tt,ee,w,triTestT) (\(tt,ee,w,triTestT) -> do ((tt,ee,w,triTestT),()) <- with_computed_fun (tt,ee,w,triTestT) (\(tt,ee,w,triTestT) -> do (tt,ee,w,triTestT,cTri) <- a19_GCQWalk oracle tt ee w triTestT cTri_nonzero <- qinit True cTri_nonzero <- qnot cTri_nonzero `controlled` cTri .==. 0 return (tt,ee,w,triTestT,cTri,cTri_nonzero)) (\(tt,ee,w,triTestT,cTri,cTri_nonzero) -> do phaseFlipIf $ (triTestT .==. 0) .&&. cTri_nonzero return ((tt,ee,w,triTestT,cTri,cTri_nonzero),())) w <- a7_DIFFUSE w return (tt,ee,w,triTestT)) comment_with_label "EXIT: a18_TriangleEdgeSearch" (tt,ee,w,triTestT) ("tt","ee","w","triTestT") return (tt,ee,w,triTestT) -- | Algorithm 19: /GCQWalk/ (“Graph Collision Quantum Walk”) -- -- Perform graph collision on the /R/-tuple /tt/ and the node /w/, to determine -- (with high probability) whether /w/ forms a triangle with some pair of nodes -- in /tt/. a19_GCQWalk :: QWTFP_spec -- ^ The ambient oracle. -> IntMap QNode -- ^ /tt/, an /R/-tuple of nodes. -> IntMap (IntMap Qubit) -- ^ /ee/, a cache of the edge data for /tt/. -> QNode -- ^ /w/, a node. -> Qubit -- ^ /triTestT/, test qubit to record if a triangle has already been found. -> Circ (IntMap QNode, IntMap (IntMap Qubit), QNode, Qubit, QDInt) -- ^ Return /(tt,ee,w,triTestT,cTri)/. a19_GCQWalk oracle@(n,r,edgeOracle,qram) = box "a19" $ \tt ee w triTestT -> do comment_with_label "ENTER: a19_GCQWalk" (tt,ee,w,triTestT) ("tt","ee","w","triTestT") let nn = 2^n rr = 2^r rbar = max ((2 * r) `div` 3) 1 rrbar = 2^rbar tbarm = max (rr `div` rrbar) 1 tbarw = floor $ sqrt $ fromIntegral rrbar cTri <- qinit (intm (2*rbar - 1) 0) with_ancilla_init ((intMap_replicate rrbar (intm r 0)), (intm rbar 0), (intm r 0), (intMap_replicate rrbar False)) $ \(tau,iota,sigma,eew) -> do tau <- a4_HADAMARD tau iota <- a4_HADAMARD iota sigma <- a4_HADAMARD sigma eew <- mapWithKeyM (\j eew_j -> do let taub = tau ! j ttd <- qinit (replicate n False) (taub, tt, ttd) <- qram_fetch qram taub tt ttd eew_j <- edgeOracle ttd w eew_j (taub, tt, ttd) <- qram_fetch qram taub tt ttd qterm (replicate n False) ttd return eew_j) eew cTri <- foldM (\cTri j -> do let tau_j = tau ! j eed <- qinit (intMap_replicate rr False) (taub,ee,eed) <- a11_FetchE tau_j ee eed cTri <- foldM (\cTri k -> do let tau_k = tau ! k -- Note: the Fetch to eedd_k seems redundant here; why not control on (eedd !! k) directly? eedd_k <- qinit False (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k cTri <- increment cTri `controlled` eedd_k .&&. (eew ! j) .&&. (eew ! k) (tauc, eed, eedd_k) <- qram_fetch qram tau_k eed eedd_k qterm False eedd_k return cTri) cTri [j+1..rrbar-1] (taub,ee,eed) <- a11_FetchE tau_j ee eed qterm (intMap_replicate rr False) eed return cTri) cTri [0..rrbar-1] (tt,ee,w,(tau,iota,sigma,eew,cTri,triTestT)) <- box_loopM "a19_loop1" tbarm (tt,ee,w,(tau,iota,sigma,eew,cTri,triTestT)) (\(tt,ee,w,(e1,e2,e3,e4,cTri,triTestT)) -> do ((cTri,triTestT),()) <- with_computed_fun (cTri,triTestT) (\(cTri,triTestT) -> do cTri_nonzero <- qinit True cTri_nonzero <- qnot cTri_nonzero `controlled` cTri .==. 0 return (cTri,triTestT,cTri_nonzero)) (\(cTri,triTestT,cTri_nonzero) -> do phaseFlipIf $ (triTestT .==. 0) .&&. cTri_nonzero return ((cTri,triTestT,cTri_nonzero),())) box_loopM "a19_loop2" tbarw (tt,ee,w,(e1,e2,e3,e4,cTri,triTestT)) (\(b,c,d,e) -> a20_GCQWStep oracle b c d e)) comment_with_label "EXIT: a19_GCQWalk" (tt,ee,w,triTestT,cTri) ("tt","ee","w","triTestT","cTri") return (tt,ee,w,triTestT,cTri) -- | Algorithm 20: /GCQWStep/ -- Take one step in the graph collision walk (used in 'a19_GCQWalk' above). -- Uses many auxiliary registers. -- The arguments are, in this order: -- -- * The ambient oracle. -- -- * /tt/, an /R/-tuple of nodes. -- -- * /ee/, a cache of the edge data for /tt/. -- -- * /w/, a node. -- -- * /regs/, various workspace\/output registers. -- -- * /ttd/, /eed/, /taud/, /eewd/, and /eedd/, local ancillas. -- -- The function returns /(tt, ee, w, regs)/. a20_GCQWStep :: QWTFP_spec -> IntMap QNode -> IntMap (IntMap Qubit) -> QNode -> GCQWRegs -> Circ (IntMap QNode, IntMap (IntMap Qubit), QNode, GCQWRegs) a20_GCQWStep oracle@(n,r,edgeOracle,qram) = box "a20" $ \tt ee w gcqwRegs@(tau,iota,sigma,eew,cTri,triTestT) -> do comment_with_label "ENTER: a20_GCQWStep" (tt,ee,w,tau,iota,sigma,eew,cTri,triTestT) ("tt","ee","w","tau","iota","sigma","eew","cTri","triTestT") let rr = 2^r rbar = max ((2 * r) `div` 3) 1 rrbar = 2^rbar (iota, sigma) <- a7_DIFFUSE (iota, sigma) ((tt,ee,w,gcqwRegs),_) <- with_computed_fun (tt,ee,w,gcqwRegs) (\(tt,ee,w,gcqwRegs@(tau,iota,sigma,eew,cTri,triTestT)) -> do ttd <- qinit (replicate n False) eed <- qinit (intMap_replicate rr False) taud <- qinit (intm r 0) eewd <- qinit False eedd <- qinit (intMap_replicate rrbar False) (iota, tau, taud) <- qram_fetch qram iota tau taud (taud, tt, ttd) <- qram_fetch qram taud tt ttd (iota,eew,eewd) <- qram_swap qram iota eew eewd (taud,ee,eed) <- a11_FetchE taud ee eed eedd <- mapWithKeyM (\k eeddb -> do let taub = tau ! k (taub, eed, eeddb) <- qram_fetch qram taub eed eeddb return eeddb) eedd cTri <- loop_with_indexM (rrbar-1) cTri (\a cTri -> do decrement cTri `controlled` (eedd ! a) .&&. (eewd) .&&. (eew ! a)) eewd <- edgeOracle ttd w eewd eedd <- mapWithKeyM (\k e -> do let taub = tau ! k let eeddb = eedd ! k (taub, eed, eeddb) <- qram_fetch qram taub eed eeddb return e) eedd (taud,ee,eed) <- a11_FetchE taud ee eed (taud,tt,ttd) <- qram_fetch qram taud tt ttd (iota,tau,taud) <- qram_store qram iota tau taud return (tt,ee,w,gcqwRegs,ttd,eed,taud,eewd,eedd)) (\(tt,ee,w,(tau,iota,sigma,eew,cTri,triTestT),ttd,eed,taud,eewd,eedd) -> do (taud,sigma) <- a14_SWAP taud sigma return ((tt,ee,w,(tau,iota,sigma,eew,cTri,triTestT),ttd,eed,taud,eewd,eedd),())) comment_with_label "ENTER: a20_GCQWStep" (tt,ee,w,gcqwRegs) ("tt","ee","w",("tau","iota","sigma","eew","cTri","triTestT")) return (tt,ee,w,gcqwRegs)