{-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} -- | Define various analytic functions for 'FDouble' and 'QDouble'. module Quipper.Algorithms.QLS.RealFunc where import Data.List(mapAccumL) import Quipper import Quipper.Algorithms.QLS.CircLiftingImport import Quipper.Algorithms.QLS.QSignedInt import Quipper.Algorithms.QLS.QDouble import Quipper.Algorithms.QLS.Utils -- * Some analytic functions on 'FDouble'. -- | Approximation of the sine function using Taylor series. build_circuit approx_sin :: FDouble -> FDouble approx_sin x = let x2 = x * x in let x3 = x2 * x in let x4 = x2 * x2 in let x5 = x4 * x in let x7 = x2 * x5 in let x9 = x2 * x7 in let x11 = x2 * x9 in x - (x3 / 6.0) + (x5 / 120.0) - (x7 / 5040.0) + (x9 / 362880.0) - (x11 / 39916800.0) -- | Implementation of the sine function valid on the whole domain of -- 'FDouble'. build_circuit local_sin :: FDouble -> FDouble local_sin x = let n = fromIntegral $ floor (x/(2.0*local_pi)) in let y = x - 2.0*local_pi*n in if (y < local_pi/2.0) then approx_sin y else if (y > 3.0*local_pi/2.0) then approx_sin (y - 2.0*local_pi) else approx_sin (local_pi - y) -- | Implementation of the cosine function valid on the whole domain -- of 'FDouble'. build_circuit local_cos :: FDouble -> FDouble local_cos x = local_sin (x + local_pi/2.0) -- listAngle :: [Double] listAngle = snd $ mapAccumL (\a x -> (a+1, x / (2 ** a))) 3.0 (replicate after_radix_length pi) -- template_listAngle :: Circ [QDouble] template_listAngle = mapM (\x -> qinit $ fdouble x) listAngle -- listCos :: [Double] listCos = map cos listAngle -- template_listCos :: Circ [QDouble] template_listCos = mapM (\x -> qinit $ fdouble x) listCos -- listSin :: [Double] listSin = map sin listAngle -- template_listSin :: Circ [QDouble] template_listSin = mapM (\x -> qinit $ fdouble x) listCos -- list_values :: [(FDouble,FDouble,FDouble)] list_values = map (\(x,y,z) -> (fdouble x, fdouble y, fdouble z)) $ zip3 listAngle listCos listSin template_list_values = mapM (\(x,y,z) -> do x' <- qinit $ fdouble x y' <- qinit $ fdouble y z' <- qinit $ fdouble z return (x',y',z')) $ zip3 listAngle listCos listSin -- | Auxiliary function for 'local_sqrt'. build_circuit approx_sqrt :: Int -> FDouble -> FDouble approx_sqrt n x = case n of 0 -> x n -> let s = approx_sqrt (paramPred n) x in (s + x/s)/2.0 -- | Approximation of the square root using iterative means. build_circuit local_sqrt :: FDouble -> FDouble local_sqrt x = approx_sqrt paramTen x -- | The function 'Data.Complex.magnitude' defined for -- 'FDouble'. Calculate the non-negative magnitude of a complex number. build_circuit local_mag :: FDouble -> FDouble -> FDouble local_mag x y = local_sqrt (x * x + y * y) -- | Apply the matrix -- -- > ( a b ) -- > ( c d ) -- -- to the column vector (/x/,/y/). build_circuit rotate :: FDouble -> FDouble -> FDouble -> FDouble -> FDouble -> FDouble -> (FDouble,FDouble) rotate a b c d x y = (a * x + b * y, c * x + d * y) where -- To help the GHC 8.0 typechecker dummy = id_fdouble x -- | Auxiliary function for 'approx_atan2'. build_circuit approx_atan2_aux :: FDouble -> FDouble -> (FDouble,FDouble, FDouble) -> (FDouble, FDouble, FDouble) -> (FDouble,FDouble,FDouble) approx_atan2_aux x y (angle, x', y') (r, cn, sn) = let (a,(b,c)) = if (y' > y) then (angle - r, rotate cn sn (-sn) cn x' y') else (angle + r, rotate cn (-sn) sn cn x' y') in (a,b,c) where -- To help the GHC 8.0 typechecker dummy_r = id_fdouble r -- | Definition of 'atan2' using a CORDIC method. Assume (/x/,/y/) is -- in first quadrant and that /x/ > /y/. build_circuit approx_atan2 :: FDouble -> FDouble -> FDouble approx_atan2 y x = let list = list_values in let (a,_,_) = foldl (approx_atan2_aux x y) (0.0, local_mag x y, 0.0) list in a -- | Definition of 'atan2' using a CORDIC method. /x/ and /y/ can be any 'FDouble'. build_circuit local_atan2 :: FDouble -> FDouble -> FDouble local_atan2 y' x' = let (x,y,(pad,sign)) = if (x' >= 0.0 && y' >= 0.0) then ( x', y', (0.0, 1.0)) else if (x' >= 0.0 && y' < 0.0) then ( x', -y', (0.0, -1.0)) else if (x' < 0.0 && y' < 0.0) then (-x', -y', (-local_pi, 1.0)) else (-x', y', (local_pi, -1.0)) in let angle = if (x > y) then approx_atan2 y x else local_pi/2.0 - approx_atan2 x y in sign * angle + pad -- | The function 'Data.Complex.mkPolar' defined for 'FDouble'. Form a -- complex number from polar components of magnitude and phase. build_circuit local_mkPolar :: FDouble -> FDouble -> (FDouble,FDouble) local_mkPolar p t = (p * local_cos t, p * local_sin t) instance Floating FDouble where pi = fromRational $ toRational pi sin x = local_sin x cos x = local_cos x sinh x = (exp x - exp (-x)) / 2 cosh x = (exp x - exp (-x)) / 2 asinh x = error "asinh not defined for FDouble" acosh x = error "acosh not defined for FDouble" atanh x = error "atanh not defined for FDouble" exp x = undefined log x = undefined asin x = error "asin not defined for FDouble" acos x = error "acos not defined for FDouble" atan x = atan2 x 1 instance RealFloat FDouble where floatRadix _ = 2 floatDigits x = xdouble_length x floatRange _ = (0,0) decodeFloat (XDouble k n) = (integer_of_fsint n, -k) encodeFloat x k = XDouble (-k) (fromInteger x) isNaN _ = False isInfinite _ = False isDenormalized _ = False isNegativeZero _ = False isIEEE _ = False atan2 y x = local_atan2 y x -- | A type class for quantum floating-point numbers. class QFloating a where -- | Quantum implementation of the sine function. q_sin :: a -> Circ a -- | Quantum implementation of the cosine function. q_cos :: a -> Circ a instance QFloating QDouble where q_sin x = (unpack template_local_sin) x q_cos x = (unpack template_local_cos) x -- | Quantum implementation of 'atan2' on 'QDouble'. q_atan2 :: QDouble -> QDouble -> Circ QDouble q_atan2 = unpack template_local_atan2 -- | Quantum implementation of 'Data.Complex.magnitude' on 'QDouble'. q_magnitude :: (QDouble, QDouble) -> Circ QDouble q_magnitude = Prelude.uncurry $ unpack template_local_mag -- | Quantum implementation of 'Data.Complex.mkPolar' on 'QDouble'. q_mkPolar :: QDouble -> QDouble -> Circ (QDouble,QDouble) q_mkPolar = unpack template_local_mkPolar -- | Quantum implementation of 'Data.Complex.realPart' on 'QDouble': -- return the real part of a complex number. A quantum complex is a -- pair of two 'QDouble's. q_Re :: (QDouble,QDouble) -> Circ QDouble q_Re (x,y) = return x -- | Quantum implementation of 'Data.Complex.imagPart' on 'QDouble': -- return the imaginary part of a copmlex number. A quantum complex is -- a pair of two 'QDouble's. q_Im :: (QDouble,QDouble) -> Circ QDouble q_Im (x,y) = return y my_test_fdouble = do for 0 37 1 $ \i -> do let x = fromIntegral i let a1 = fromRational $ toRational (sin(x * pi/37)) let a2 = fromRational $ toRational (cos(x * pi/37)) let z1 = local_atan2 a1 a2 let z2 = fromRational $ toRational $ atan2 (sin(x * pi/37)) (cos(x * pi/37)) putStrLn $ show_fdouble $ abs (z1 - z2) -- * Template subroutines of analytic functions. -- | Template version of 'sin'. template_sin :: Circ (QDouble -> Circ QDouble) template_sin = return $ \x -> box "sin" q_sin x -- | Template version of 'cos'. template_cos :: Circ (QDouble -> Circ QDouble) template_cos = return $ \x -> box "cos" q_cos x -- | Template version of 'atan2'. template_atan2 :: Circ (QDouble -> Circ (QDouble -> Circ QDouble)) template_atan2 = return $ \x -> return $ \y -> box "atan" (uncurry q_atan2) (x,y) -- * Template subroutines for dealing with quantum complex number encoded as pairs of 'QDouble'. -- | Template version of 'Data.Complex.mkPolar'. template_mkPolar :: Circ (QDouble -> Circ (QDouble -> Circ (QDouble,QDouble))) template_mkPolar = return $ \x -> return $ \y -> box "mkPolar" (uncurry q_mkPolar) (x,y) -- | Template version of the constructor 'Data.Complex.:+' of -- 'Data.Complex.Complex'. template_symb_colon_symb_plus_ :: Circ (QDouble -> Circ (QDouble -> Circ (QDouble,QDouble))) template_symb_colon_symb_plus_ = return $ \x -> return $ \y -> return (x,y) -- | Template version of 'Data.Complex.magnitude'. template_magnitude :: Circ ((QDouble,QDouble) -> Circ QDouble) template_magnitude = return $ \p -> box "mag" q_magnitude p -- | Template version of 'Data.Complex.realPart'. template_realPart :: Circ ((QDouble,QDouble) -> Circ QDouble) template_realPart = return $ \(x,y) -> return x -- | Template version of 'Data.Complex.imagPart'. template_imagPart :: Circ ((QDouble,QDouble) -> Circ QDouble) template_imagPart = return $ \(x,y) -> return y