{-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE DeriveDataTypeable #-} -- | This module contains the implementation of the various quantum circuits -- that make up the boolean formula algorithm. Please see "Quipper.Algorithms.BF.Main" -- for an overview of the boolean formula algorithm. module Quipper.Algorithms.BF.BooleanFormula where import Quipper import Quipper.Internal import Quipper.Algorithms.BF.Hex import Quipper.Libraries.QFT import Quipper.Libraries.QuantumIf import Quipper.Libraries.Simulation import Quipper.Libraries.Decompose import Quipper.Utils.Auxiliary (mmap) import Data.Typeable -- ---------------------------------------------------------------------- -- * Classical data structures -- ** Oracle description -- $ We define a data structure to hold the various parameters that -- are used to define an oracle. -- | The input to the BF Algorithm is the description of an oracle to -- represent a given size of hex board, and a given size for the phase -- estimation register. data BooleanFormulaOracle = BFO { oracle_x_max :: Int, -- ^ The /x/-dimension of hex board. oracle_y_max :: Int, -- ^ The /y/-dimension of hex board. oracle_t :: Int, -- ^ Size of phase estimation register. -- The number of moves remaining can -- depend on the starting state of the HexBoard oracle_s :: Int, -- ^ Number of moves remaining. -- This should start as /x/⋅/y/, if no moves have been made. oracle_m :: Int, -- ^ Size of the direction register, -- i.e., size of labels on the BF tree. -- This should be the ceiling of log(/x/⋅/y/). start_board :: HexBoard, -- ^ A description of the starting state of the -- board, and can be used to calculate /s/. oracle_hex :: HexCircuit -- ^ An extra flag that we can use so that different -- HEX circuits can be used instead of the full circuit. } -- | A type to define which Hex circuit to use. data HexCircuit = Hex -- ^ The actual Hex circuit. | Dummy -- ^ A Dummy Hex circuit. | EmptyHex -- ^ Nothing. -- | Create an oracle description. This only requires /x/, /y/, and -- /t/ to be specified, as the remaining values can be calculated. The number of -- moves remaining, /s/, is calculated as the total number of squares on the board, -- and /m/ is calculated as the number of bits required to represent /s/+1. createOracle :: Int -> Int -> Int -> BooleanFormulaOracle createOracle x y t = BFO { oracle_x_max = x, oracle_y_max = y, oracle_t = t, oracle_s = s, oracle_m = m, start_board = (empty,empty), oracle_hex = Hex } where s = x * y m = ceiling (log (fromIntegral (s+1)) / log 2) empty = replicate s False -- | A function to set the \"Dummy\" flag in the given oracle to the given -- 'HexCircuit' value. update_hex :: BooleanFormulaOracle -> HexCircuit -> BooleanFormulaOracle update_hex bfo hex = bfo {oracle_hex = hex} -- | Update the 'start_board' in the given oracle, with the given 'HexBoard'. This -- also updates the 'oracle_s' field of the oracle to be in line with -- the new 'start_board'. update_start_board :: BooleanFormulaOracle -> HexBoard -> BooleanFormulaOracle update_start_board bfo start = bfo { oracle_s = s, start_board = start } where x = oracle_x_max bfo y = oracle_y_max bfo s = (x*y) - (moves_made start) -- | An oracle for a 9 by 7 Hex board, with the parameters: -- /x/=9, /y/=7, /t/=189. The calculated values are: /s/=63, /m/=6. full_oracle :: BooleanFormulaOracle full_oracle = createOracle 9 7 189 -- | A smaller oracle for testing purposes. The numbers should be -- chosen such that /x/⋅/y/ = 2[sup /n/]−1 for some /n/. Here, we set -- /x/=3 and /y/=5, to give /x/⋅/y/=15. We arbitrarily set the size of -- the phase estimation register to /t/=4. test_oracle :: BooleanFormulaOracle test_oracle = createOracle 5 3 4 -- ** Hex boards -- | A hex board is specified by a pair of lists of booleans. For a -- board of size /x/ by /y/, each list should contain /x/⋅/y/ -- elements. The first list is the \"blue\" bitmap, and the second is -- the \"red\" maskmap. type HexBoard = ([Bool],[Bool]) -- | A function to determine how many moves have been made on a given HexBoard. -- This function assumes that the given 'HexBoard' is valid, in the sense that -- no duplicate moves have been made. moves_made :: HexBoard -> Int moves_made (blue,red) = moves blue + moves red where moves color = length (filter id color) -- | A function to determine which spaces are still empty in the given HexBoard. -- This function assumes that the given 'HexBoard' is valid, in the sense that -- no duplicate moves have been made. This function will return a list of all the -- empty spaces remaining, in strictly increasing order. empty_spaces :: HexBoard -> [Int] empty_spaces (blue,red) = empty_spaces' blue red 0 where empty_spaces' [] [] _ = [] empty_spaces' [] _ _ = error "empty_spaces: Red and Blue boards of different length" empty_spaces' _ [] _ = error "empty_spaces: Red and Blue boards of different length" empty_spaces' (b:bs) (r:rs) n = if (b || r) then rest else (n:rest) where rest = empty_spaces' bs rs (n+1) -- ---------------------------------------------------------------------- -- * Quantum data structures -- $ Some data structures to help in defining the algorithm. -- | The phase estimation register is a simple register of qubits. This is kept -- separate from the rest of the 'BooleanFormulaRegister' as it is this register -- which will be measured at the end of the algorithm. type PhaseEstimationRegister = [Qubit] -- | The direction register is a simple register of qubits, -- made explicit here so we can see that a \"position\" is a list of directions. type GenericDirectionRegister a = [a] -- | A type synonym defined as the 'Qubit' instance of a -- 'GenericDirectionRegister'. type DirectionRegister = GenericDirectionRegister Qubit -- | The rest of the boolean formula algorithm requires a register which is -- split into 3 main parts. data GenericBooleanFormulaRegister a = BFR { -- | The position register is split into two parts: -- the leaf and paraleaf \"flags\". position_flags :: (a,a), -- | The current position, and how we got there, i.e., directions we followed. -- Any position can be reached by at most /x/⋅/y/ directions. position :: [GenericDirectionRegister a], work_leaf :: a, work_paraleaf :: a, work_binary :: a, work_height :: a, work_r :: a, work_rp :: a, work_rpp :: a, -- ^ Seven flags that make up the work register. direction :: GenericDirectionRegister a -- ^ The direction register. } deriving (Typeable, Show) -- | A type synonym defined as the 'Qubit' instantiation of a -- 'GenericBooleanFormulaRegister'. type BooleanFormulaRegister = GenericBooleanFormulaRegister Qubit -- | A function to add labels to the wires that make up a 'BooleanFormulaRegister'. -- These labels correspond to the parts of the register. labelBFR :: BooleanFormulaRegister -> Circ () labelBFR reg = do let tuple = toTuple reg label tuple (("pos-leaf","pos-paraleaf"), "pos", ("leaf","paraleaf","binary","height","r","rp","rpp"), "dir") -- | A type synonym defined as the 'Bool' instantiation of a -- 'GenericBooleanFormulaRegister'. type BoolRegister = GenericBooleanFormulaRegister Bool -- | Helper function to simplify the 'QCData' instance for 'BooleanFormulaRegister'. -- Create a tuple from a 'GenericBooleanFormulaRegister'. toTuple :: GenericBooleanFormulaRegister a -> ((a,a),[[a]],(a,a,a,a,a,a,a),[a]) toTuple r = (position_flags r,position r,(work_leaf r,work_paraleaf r,work_binary r,work_height r,work_r r,work_rp r,work_rpp r),direction r) -- | Helper function to simplify the 'QCData' instance for 'BooleanFormulaRegister'. -- Create a 'GenericBooleanFormulaRegister' from a tuple. fromTuple :: ((a,a),[[a]],(a,a,a,a,a,a,a),[a]) -> GenericBooleanFormulaRegister a fromTuple (pf,p,(wl,wp,wb,wh,wr,wrp,wrpp),d) = BFR { position_flags = pf, position = p, work_leaf = wl, work_paraleaf = wp, work_binary = wb, work_height = wh, work_r = wr, work_rp = wrp, work_rpp = wrpp, direction = d } type instance QCType x y (GenericBooleanFormulaRegister a) = GenericBooleanFormulaRegister (QCType x y a) type instance QTypeB (GenericBooleanFormulaRegister a) = GenericBooleanFormulaRegister (QTypeB a) instance QCData a => QCData (GenericBooleanFormulaRegister a) where qcdata_mapM s f g xs = mmap fromTuple $ qcdata_mapM (toTuple s) f g (toTuple xs) qcdata_zip s q c q' c' xs ys e = fromTuple $ qcdata_zip (toTuple s) q c q' c' (toTuple xs) (toTuple ys) e qcdata_promote a x s = fromTuple $ qcdata_promote (toTuple a) (toTuple x) s instance (Labelable a String) => Labelable (GenericBooleanFormulaRegister a) String where label_rec r s = do label_rec (position_flags r) s `dotted_indexed` "posflag" label_rec (position r) s `dotted_indexed` "pos" label_rec (work_leaf r) s `dotted_indexed` "leaf" label_rec (work_paraleaf r) s `dotted_indexed` "paraleaf" label_rec (work_binary r) s `dotted_indexed` "binary" label_rec (work_height r) s `dotted_indexed` "height" label_rec (work_r r) s `dotted_indexed` "r" label_rec (work_rp r) s `dotted_indexed` "rp" label_rec (work_rpp r) s `dotted_indexed` "rpp" label_rec (direction r) s `dotted_indexed` "dir" -- | Create an initial classical 'BooleanFormulaRegister' for a given oracle description. -- The /position/ register is initialized in the /zero/ state that represents being -- at label /zero/, or node /rpp/ in the tree. The work qubits are all initialized to -- /zero/, as the first call to the /oracle/ circuit will set them accordingly for -- the /position/ we are currently in. The /direction/ register is also set to /zero/ -- as this is the direction in which the node /rp/ is in. The given -- 'BooleanFormulaOracle' is used to make sure the registers are of the correct -- size, i.e., number of qubits. createRegister :: BooleanFormulaOracle -> BoolRegister createRegister oracle = BFR { position_flags = (False,False), position = replicate s (replicate m False), work_leaf = False, work_paraleaf = False, work_binary = False, work_height = False, work_r = False, work_rp = False, work_rpp = False, direction = replicate m False } where s = oracle_s oracle m = oracle_m oracle -- | Create a shape parameter for a 'BooleanFormulaRegister' of the -- correct size. registerShape :: BooleanFormulaOracle -> BooleanFormulaRegister registerShape oracle = qshape (createRegister oracle) -- | Initialize a 'BooleanFormulaRegister' from a 'BooleanFormulaOracle'. initializeRegister :: BooleanFormulaOracle -> Circ BooleanFormulaRegister initializeRegister oracle = qinit (createRegister oracle) -- ====================================================================== -- * Oracle implementation -- $ The functions in this implementation follow a separation of the boolean -- formula algorithm into two parts. The first part corresponds to the -- algorithms defined in this module. The second part consists of the -- algorithms defined in "Quipper.Algorithms.BF.Hex". This separation relates to the -- first part defining the quantum parts of the algorithm, including the -- phase estimation, and the quantum walk, whereas the remaining four define -- the classical implementation of the circuit for determining which player -- has won a completed game of Hex, which is converted to a quantum circuit -- using Quipper's \"build_circuit\" keyword. -- -- Note that the circuits for the algorithms in this module have been tested -- for performing a quantum walk on the tree defined for a given oracle (but -- with a dummy function taking the place of the call to HEX). -- | The overall Boolean Formula Algorithm. It initializes the -- phase estimation register into an equal super-position of all 2[sup t] states, -- and the other registers as defined previously. It then maps the exponentiated -- version of the unitary /u/, as per phase estimation, before applying the -- inverse QFT, and measuring the result. qw_bf :: BooleanFormulaOracle -> Circ [Bit] qw_bf oracle = do -- initialize the phase estimation register, -- and put it in an equal super-position let t = oracle_t oracle a <- qinit (replicate t False) label a "a" a <- mapUnary hadamard a -- initialize the other boolean formula registers b <- initializeRegister oracle labelBFR b -- we can use a separate recursive function to map the exp_u algorithm over a let t = oracle_t oracle map_exp_u oracle a b (t-1) -- qft is defined, so we reverse it to get inverse qft a <- (subroutine_inverse_qft oracle) a -- we're only interested in the result of measuring a, -- so we can discard all the qubits in the rest of the register qdiscard b measure a -- | The inverse quantum Fourier transform as a boxed subroutine. subroutine_inverse_qft :: BooleanFormulaOracle -> [Qubit] -> Circ [Qubit] subroutine_inverse_qft o = box "QFT*" (reverse_generic_endo qft_little_endian) -- | \"Map\" the application of the exponentiated unitary /u/ -- over the phase estimation register. That is, each qubit in the phase estimation -- register is used as a control over a call to the unitary /u/, exponentiated to -- the appropriate power. map_exp_u :: BooleanFormulaOracle -> [Qubit] -> BooleanFormulaRegister -> Int -> Circ () map_exp_u _ [] _ _ = return () map_exp_u o (a:as) b l = do let x_max = oracle_x_max o -- we can move the control out of the exp_u function exp_u o (2^(l-(length as))) b `controlled` a map_exp_u o as b l -- | Exponentiate the unitary /u/. In this implementation, this is -- achieved by repeated application of /u/. exp_u :: BooleanFormulaOracle -> Integer -> BooleanFormulaRegister -> Circ () exp_u _ 0 _ = return () exp_u o n_steps b = do (subroutine_u o) b exp_u o (n_steps-1) b -- | The unitary /u/ represents a single step in the walk on the NAND tree. A call -- to the oracle determines what type of node we are at (so we know which directions -- are valid to step to), the call to diffuse sets the direction register to be a -- super-position of all valid directions, the call to walk performs the step, and then -- the call to undo oracle has to clean up the work registers that were set by the -- call to the oracle. Note that the undo oracle step is not simply the inverse of the -- oracle, as we have walked since the oracle was called. u :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () u o b = do comment "U" labelBFR b (subroutine_oracle o) b (subroutine_diffuse o) b (subroutine_walk o) b (subroutine_undo_oracle o) b -- | The circuit for 'u' as a boxed subroutine. subroutine_u :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () subroutine_u o = box "U" (u o) -- | Call the oracle to determine some extra information about where -- we are in the tree. Essentially, the special cases are when were are at one of -- the three \"low height\" nodes, or when we are at a node representing a complete -- game of Hex, and we need to determine if this is a leaf, by calling the hex circuit, -- which determines whether the node represents a completed game of hex in which -- the red player has won. oracle :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () oracle o register = do comment "ORACLE" labelBFR register let init = start_board o let x_max = oracle_x_max o let (is_leaf,is_paraleaf) = position_flags register with_controls (is_leaf) ( -- if is_leaf -- we are at a leaf node, so set "leaf" do let leaf = work_leaf register qnot_at leaf ) with_controls (is_leaf .==. False .&&. is_paraleaf .==. True) ( -- else if is_paraleaf -- we are at a paraleaf node, so set "paraleaf" do let paraleaf = work_paraleaf register qnot_at paraleaf let binary = work_binary register qnot_at binary let pos = position register let hex_subroutine = case oracle_hex o of Hex -> box "HEX" (hex_oracle init (oracle_s o) x_max) Dummy -> hex_oracle_dummy EmptyHex -> \x -> return x -- hex sets "binary" flag depending on whether the paraleaf is attached to a -- a leaf, i.e., whether red has won or lost the game of hex. hex_subroutine (pos,binary) return () ) with_controls (is_leaf .==. False .&&. is_paraleaf .==. False) ( -- else -- we're not at a leaf node, or paraleaf node do let pos = position register -- are we at a "low height" node? with_controls (controls is_paraleaf pos) ( -- we're at a "low height" node do let pos'' = pos !! (length pos - 2) let pos_m = last pos'' with_controls pos_m ( -- if pos_m == 1 do let height = work_height register qnot_at height ) let pos' = last pos let pos_1 = pos' !! (length pos' - 2) with_controls (pos_m .==. False .&&. pos_1 .==. True) ( -- else if pos_1 == 1 do let r = work_r register qnot_at r ) let pos_0 = last pos' with_controls (pos_m .==. False .&&. pos_1 .==. False .&&. pos_0 .==. True) ( -- else if pos_0 == 1 do let rp = work_rp register qnot_at rp let binary = work_binary register qnot_at binary ) with_controls (pos_m .==. False .&&. pos_1 .==. False .&&. pos_0 .==. False) ( -- else do let rpp = work_rpp register qnot_at rpp ) ) ) -- | The circuit for the 'oracle' as a boxed subroutine. subroutine_oracle :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () subroutine_oracle o = box "Oracle" (oracle o) -- | The controls to use, to see if we're at a \"low height\" node. controls :: Qubit -> [DirectionRegister] -> [ControlList] controls is_paraleaf pos = (is_paraleaf .==. False) : ctrls pos where ctrls [] = [] ctrls [p] = [] ctrls [p,q] = [] ctrls (p:ps) = (last p .==. False) : ctrls ps -- | Diffuse the direction register, to be a super-position of all valid -- directions from the current node. Note, that this implementation of the boolean -- formula algorithm does not applying the correct weighting scheme to the NAND graph, -- which would require this function to diffuse with respect to the weighting scheme. diffuse :: BooleanFormulaRegister -> Circ () diffuse register = do comment "DIFFUSE" labelBFR register let binary = work_binary register let dir = direction register with_controls binary ( -- if binary == 1 do let dir_0 = last dir hadamard_at dir_0 ) let leaf = work_leaf register let rpp = work_rpp register with_controls (binary .==. False .&&. leaf .==. False .&&. rpp .==. False) ( -- else (controlled on binary == 0, leaf == 0, rpp == 0) do mapUnary hadamard dir ) return () -- | The circuit for 'diffuse' as a boxed subroutine. subroutine_diffuse :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () subroutine_diffuse o = box "Diffuse" diffuse -- | A datatype to use instead of passing integers to 'toParent' and 'toChild' -- to define what needs to be shifted. This is used as only three different -- shift widths are ever used in the algorithm. data Where = Width -- ^ corresponds to shifting all qubits. | M -- ^ corresponds to shifting only /m/+1 qubits. | M2 -- ^ corresponds to shifting only 2/m/+1 qubits. deriving Eq -- | Define a step on the NAND graph, in the direction specified -- by the direction register, and updates the direction register to be where -- we have stepped from. -- For this algorithm we have developed the 'if_then_elseQ' construct, which -- gives us a nice way of constructing if/else statements acting on -- boolean statements over qubits (see "Quipper.Libraries.QuantumIf"). walk :: BooleanFormulaRegister -> Circ () walk register = do comment "WALK" labelBFR register let leaf = work_leaf register let paraleaf = work_paraleaf register let dir = direction register let dir_0 = last dir let (is_leaf,is_paraleaf) = position_flags register let pos = position register let pos_0 = last (last pos) let pos_1 = last (init (last pos)) let height_1 = work_height register let rpp = work_rpp register let rp = work_rp register let r = work_r register let dir_all_1 = foldr1 (\x y -> And x y) (map A dir) let boolean_statement_in = Or (A leaf) (And (A paraleaf) (Not (A dir_0))) let boolean_statement_out = Or (A leaf) (And (A paraleaf) (A is_leaf)) if_then_elseQinv boolean_statement_in ( -- if leaf == 1 or (paraleaf == 1 and dir_0 == 0) do qnot_at is_leaf ) ( -- else (leaf == 0 and (paraleaf == 0 or dir_0 == 1)) do let boolean_statement_in = And (A paraleaf) (A dir_0) let boolean_statement_out = And (A paraleaf) (Not (dir_all_1)) if_then_elseQinv boolean_statement_in ( -- if paraleaf == 1 and dir_0 == 1 toParent Width register -- now, dir /= 1..1, so dir_0 could be either 0 or 1 ) ( -- else (paraleaf == 0 or dir_0 == 0) do let boolean_statement_in = Or (A rpp) (And (A rp) (A dir_0)) let boolean_statement_out = Or (A rpp) (And (A rp) (Not (A dir_0))) if_then_elseQinv boolean_statement_in ( -- if rpp == 1 or (rp == 1 and dir_0 == 1 ) do qnot_at pos_0 -- dir_0 should be changed, -- as we're moving from rp to rpp, and rpp only has a child at 0 -- or we're moving from rpp to rp, and dir_0 should be set to 1 as -- we have come from a parent qnot_at dir_0 ) ( -- else (rpp == 0 and (rp == 0 or dir_0 == 0)) do let boolean_statement_in = Or (And (A rp) (Not (A dir_0))) (And (A r) dir_all_1) let pos_m = last (last (init pos)) let boolean_statement_out = Or (And (A rp) dir_all_1) (And (A r) (And (Not dir_all_1) (Not (A pos_m)))) if_then_elseQinv boolean_statement_in ( -- if (rp == 1 and dir_0 == 0) or (r == 1 and dir == 1..1) do qnot_at pos_1 -- we know that pos_m == 0 -- dir is should be changed -- when we move from rp to r, and when we move from r to rp mapUnary qnot dir return () ) ( -- else ((rp == 0 or dir_0 == 1) and (r == 0 or dir /= 1..1)) do let boolean_statement = A r if_then_elseQ boolean_statement ( -- if r == 1 do qnot_at pos_1 toChild M register -- now dir == 1..1 -- we also know that pos_m == 1 ) ( -- else do let boolean_statement_in = And (A height_1) (dir_all_1) let boolean_statement_out = And (A height_1) (Not dir_all_1) if_then_elseQinv boolean_statement_in ( -- if height_1 == 1 and dir == 1..1 do toParent M register qnot_at pos_1 -- now, dir /= 1..1 ) ( -- else height_1 == 0 or dir /= 1..1 do let boolean_statement = A height_1 if_then_elseQ boolean_statement ( -- if height_1 == 1 (and dir /= 1..1) do toChild M2 register -- now dir == 1..1 ) ( -- else (if height_1 == 0) do let boolean_statement_in = dir_all_1 let boolean_statement_out = Not dir_all_1 if_then_elseQinv boolean_statement_in ( -- if dir = 1..1 do toParent Width register -- now dir /= 1..1 ) ( --else (dir /= 1..1) do toChild Width register -- now dir == 1..1 ) boolean_statement_out ) ) boolean_statement_out ) ) boolean_statement_out ) boolean_statement_out ) boolean_statement_out ) boolean_statement_out return () -- | The circuit for 'walk' as a boxed subroutine. subroutine_walk :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () subroutine_walk o = box "Walk" walk -- | Uncompute the various flags that were set by the initial call -- to the oracle. It has to uncompute the flags depending on where we were before -- the walk step, so isn't just the inverse of the oracle. undo_oracle :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () undo_oracle o register = do comment "UNDO_ORACLE" labelBFR register let initHB = start_board o let x_max = oracle_x_max o let paraleaf = work_paraleaf register let (is_leaf,is_paraleaf) = position_flags register with_controls paraleaf ( do let binary = work_binary register let pos = position register let dir = direction register let hex_subroutine = case oracle_hex o of Hex -> box "HEX" (hex_oracle initHB (oracle_s o) x_max) Dummy -> hex_oracle_dummy EmptyHex -> \x -> return x hex_subroutine (pos,binary) return () ) let leaf = work_leaf register let dir = direction register let dir_0 = last dir let boolean_statement = And (Not (A is_leaf)) (And (A is_paraleaf) (Not (A dir_0))) if_then_elseQ boolean_statement ( -- if is_leaf == 0 and is_paraleaf == 1 and dir_0 == 0 -- we went from a leaf to a paraleaf, so we can unset leaf do qnot_at leaf ) ( -- else do let binary = work_binary register let pos = position register let pos_w_2_m = last (head pos) let dir_all_1 = foldr1 (\x y -> And x y) (map A dir) let boolean_statement = Or (A is_leaf) (And (Not (A is_leaf)) (And (Not (A is_paraleaf)) (And (A pos_w_2_m) (Not (dir_all_1))))) if_then_elseQ boolean_statement ( -- if is_leaf == 1 or (is_leaf == 0 and is_paraleaf == 0 and pos_w_2_m == 1 and dir /= 1..1) -- we went from a paraleaf to a leaf, so unset binary and paraleaf -- or we went from a paraleaf to its parent... do qnot_at binary qnot_at paraleaf ) ( -- else do with_controls (init (controls is_paraleaf pos)) ( -- if pos_sm,pos_(s-1)m,...,3. == 00...0 do let height = work_height register let r = work_r register let rp = work_rp register let pos_0 = last (last pos) let pos_1 = last (init (last pos)) let pos_m = last (last (init pos)) let pos_2m = last (last (init (init pos))) let boolean_statement = dir_all_1 if_then_elseQ boolean_statement ( -- if dir = 1...1 do qnot_at height `controlled` pos_2m qnot_at r `controlled` (pos_2m .==. False .&&. pos_m .==. True) with_controls (pos_2m .==. False .&&. pos_m .==. False .&&. pos_1 .==. True) ( do qnot_at rp qnot_at binary ) ) ( -- else with_controls (pos_2m .==. False .&&. pos_m .==. False) ( do let rpp = work_rpp register qnot_at height `controlled` pos_1 qnot_at rpp `controlled` (pos_1 .==. False .&&. dir_0 .==. True) qnot_at r `controlled` (pos_1 .==. False .&&. dir_0 .==. False .&&. pos_0 .==. True) with_controls (pos_1 .==. False .&&. dir_0 .==. False .&&. pos_0 .==. False) ( do qnot_at rp qnot_at binary ) ) ) ) -- end if ) ) return () -- | The circuit for 'undo_oracle' as a boxed subroutine. subroutine_undo_oracle :: BooleanFormulaOracle -> BooleanFormulaRegister -> Circ () subroutine_undo_oracle o = box "Undo Oracle" (undo_oracle o) -- | Define the circuit that updates the position register to be the -- parent node of the current position. toParent :: Where -> BooleanFormulaRegister -> Circ () toParent M2 _ = error "TOPARENT should never be called with 2m+1 as width" toParent w register = do let pos = position register :: [[Qubit]] -- of length x*y let pos_firstM = last pos :: [Qubit] -- of length m let pos_secondM = last (init pos) :: [Qubit] -- of length m let pos_0 = last pos_firstM :: Qubit let pos_m = last pos_secondM :: Qubit let dir = direction register :: [Qubit] -- of length m let (_,is_paraleaf) = position_flags register :: (Qubit,Qubit) mapUnary qnot dir mapBinary copy_from_to (reverse pos_firstM) (reverse dir) if (w == Width) then ( do -- width -- we need to shift everything to the right by m shift_right pos -- we need to shift is_paraleaf to x*y*m copy_from_to is_paraleaf (last (head pos)) return () ) else return () if (w == M) then ( do -- m+1 -- we need to "shift" pos_m to pos_0 copy_from_to pos_m pos_0 return () ) else return () -- | @'copy_from_to' a b@: Sets the state of qubit /b/ to be the state of qubit /a/, -- (and the state of /a/ is lost in the process, so this is not cloning). -- It falls short of swapping /a/ and /b/, as we're not interested in preserving /a/. copy_from_to :: Qubit -> Qubit -> Circ (Qubit,Qubit) copy_from_to from to = do qnot_at to `controlled` from qnot_at from `controlled` to return (from,to) -- | Define the circuit that updates the position register to be the -- child node of the current position. toChild :: Where -> BooleanFormulaRegister -> Circ () toChild w register = do let pos = position register :: [[Qubit]] -- of length x*y let pos_firstM = last pos :: [Qubit] -- of length m let pos_secondM = last (init pos) :: [Qubit] -- of length m let pos_thirdM = last (init (init pos)) :: [Qubit] -- of length m let pos_0 = last pos_firstM :: Qubit let pos_m = last pos_secondM :: Qubit let pos_2m = last pos_thirdM :: Qubit let dir = direction register :: [Qubit] -- of length m let (_,is_paraleaf) = position_flags register :: (Qubit,Qubit) if (w == Width) then ( do -- width -- we need to "shift" x*y*m to is_paraleaf copy_from_to (last (head pos)) is_paraleaf -- we need to "shift" everything to the left by "m" shift_left pos ) else return () if (w == M2) then ( do -- 2m+1 -- we need to "shift" pos_m to pos_2m copy_from_to pos_m pos_2m -- we need to "shift" 0.. to m.. to shift_left [pos_secondM,pos_firstM] ) else return () if (w == M) then ( do -- we need to "shift" pos_0 to pos_m copy_from_to pos_0 pos_m return () ) else return () mapBinary copy_from_to dir pos_firstM mapUnary qnot dir return () -- | Shift every qubit in a register to the left by one. shift_left :: [DirectionRegister] -> Circ () shift_left [] = return () shift_left [d] = return () shift_left (d:d':ds) = do mapBinary copy_from_to d' d shift_left (d':ds) -- | Shift every qubit in a register to the right by one. shift_right :: [DirectionRegister] -> Circ () shift_right [] = return () shift_right [d] = return () shift_right (d:d':ds) = do shift_right (d':ds) mapBinary copy_from_to (reverse d) (reverse d') -- the arguments are reversed to give a nice symmetry to the circuits -- and should be equivalent to if they're not reversed return () -- ---------------------------------------------------------------------- -- * Possible main functions -- $ The following functions define various \main\ functions that can be called -- from an overall \main\ function to display various parts of the -- overall Boolean Formula Algorithm. The Boolean -- Formula Algorithm is split into 13 sub-algorithms, each of which can be -- displayed separately, or in various combinations. -- | Displays the overall Boolean Formula circuit for a given oracle description. main_circuit :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_circuit f g oracle = print_simple f (decompose_generic g (qw_bf oracle)) -- | Display just 1 time-step of the given oracle, -- i.e., one iteration of the 'u' from 'exp_u', with no controls. main_u :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_u f g o = print_generic f (decompose_generic g (u o)) (registerShape o) -- | Display just 1 time-step of the 'walk' algorithm for the given oracle, -- i.e., one iteration of /walk/, with no controls. main_walk :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_walk f g o = print_generic f (decompose_generic g walk) (registerShape o) -- | Display just 1 time-step of the 'diffuse' algorithm for the given oracle, -- i.e., one iteration of /diffuse/, with no controls. main_diffuse :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_diffuse f g o = print_generic f (decompose_generic g diffuse) (registerShape o) -- | Display just 1 time-step of the 'oracle' algorithm for the given oracle, -- i.e., one iteration of /oracle/, with no controls. main_oracle :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_oracle f g o = print_generic f (decompose_generic g (oracle o)) (registerShape o) -- | Display just 1 time-step of the 'undo_oracle' algorithm for the given oracle, -- i.e., one iteration of /undo_oracle/, with no controls. main_undo_oracle :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_undo_oracle f g o = print_generic f (decompose_generic g (undo_oracle o)) (registerShape o) -- | Display the circuit for the Hex algorithm, for the given oracle, -- i.e., one iteration of 'hex_oracle', with no controls. main_hex :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_hex f g o = print_generic f (decompose_generic g (hex_oracle init s x_max)) (pos,binary) where init = start_board o s = oracle_s o x_max = oracle_x_max o reg = registerShape o pos = position reg binary = work_binary reg -- | Display the circuit for the Checkwin_red algorithm, for the given oracle, -- i.e., one iteration of 'checkwin_red_circuit', with no controls. main_checkwin_red :: Format -> GateBase -> BooleanFormulaOracle -> IO () main_checkwin_red f g o = print_generic f (decompose_generic g (checkwin_red_circuit x_max)) (qshape redboard,qubit) where (redboard,_) = start_board o x_max = oracle_x_max o -- ---------------------------------------------------------------------- -- * Running the Boolean Formula Algorithm -- $ The following functions define the way that the Boolean Formula -- Algorithm would be run, if we had access to a quantum -- computer. Indeed, the functions here interface with the -- "Quipper.Libraries.Simulation.QuantumSimulation" quantum simulator -- so that they can be built. -- | Approximation of how the algorithm would be run if we had a quantum computer: -- uses QuantumSimulation run_generic_io function. The output of the algorithm will -- be all False only in the instance that the Blue player wins the game. main_bf :: BooleanFormulaOracle -> IO Bool main_bf oracle = do output <- run_generic_io (undefined :: Double) (qw_bf oracle) let result = if (or output) then True -- a /= 0 (Red Wins) else False -- a == 0 (Blue Wins) return result -- | Display the result of 'main_bf', -- i.e., either \"Red Wins\", or \"Blue Wins\" is the output. whoWins :: BooleanFormulaOracle -> IO () whoWins oracle = do result <- main_bf oracle if result then putStrLn "Red Wins" else putStrLn "Blue Wins" -- | Run 'whoWins' for the given oracle, and its \"initial\" board. main_whoWins :: BooleanFormulaOracle -> IO () main_whoWins o = whoWins o