{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LINE 1 "Quipper/Algorithms/CL/SmithReduction.hs" #-}
-- | This module provides functions for reducing (non-square) matrices 
-- towards Smith Normal Form, and hence for computing the structure of 
-- finitely-presented Abelian groups.
--
-- The SNF transformation is similar to Gaussian elimination, but over integer matrices,
-- (more generally, matrices over any principal ideal domain)
--
-- For background on how this is used to compute the structure of Abelian groups,
-- see the MathOverflow question <http://mathoverflow.net/questions/12009/>,
-- in particular Greg Kuperberg’s answer <http://mathoverflow.net/questions/12009#12053>.
-- 
-- We do not implement full SNF reduction here, but rather just as much as is
-- needed to compute the structure of finitely presented Abelian groups from
-- matrix presentations.

module Quipper.Algorithms.CL.SmithReduction where

import Data.Array
import Quipper.Algorithms.CL.Auxiliary

-- * Matrix type and basic access functions.

-- | A data type to hold an /m/×/n/ matrix (/M/[sub /ij/]),
-- with entries from an arbitrary type @a@.
-- 
-- The fields are: integers /m/ and /n/; a flag /t/ to indicate that a matrix
-- should be considered formally transposed; and an /m/×/n/ array /M/
-- containing the entries.  When /t/ is 'False', /m/ is the number of rows,
-- and /n/ the number of columns; when /t/ is 'True', this is reversed.
--
-- (The point of the flag is to allow efficient transposition, and hence to
-- allow operations on rows to be implemented in terms of the corresponding
-- operations on columns without loss of efficiency.) 
data CLMatrix a = CLMatrix Int Int Bool (Array (Int, Int) a) deriving (Show)

-- | The transpose of a matrix
transpose :: CLMatrix a -> CLMatrix a
transpose (CLMatrix m n t mtx) = CLMatrix m n (not t) mtx

-- | The number of rows of a matrix
rows :: CLMatrix a -> Int
rows (CLMatrix m n t _) = if t then n else m

-- | The number of columns of a matrix
cols :: CLMatrix a -> Int
cols (CLMatrix m n t _) = if t then m else n

-- | The row indices of a matrix.
row_list :: CLMatrix a -> [Int]
row_list m = [0..((rows m)-1)]

-- | The column indices of a matrix.
col_list :: CLMatrix a -> [Int]
col_list m = [0..((cols m)-1)]

-- | An index tuple for a matrix, at a given row and column
idx :: CLMatrix a -> Int -> Int -> (Int, Int)
idx (CLMatrix _ _ t _) i j = if t then (j,i) else (i,j)

infix 9 !!!

-- | The matrix entry at a given row and column
(!!!) :: CLMatrix a -> (Int,Int) -> a
(!!!) mm@(CLMatrix m n t mtx) (i,j) =
    if (i >= rows mm || j >= cols mm)
        then error $ "Matrix entry lookup (!!!): bad index i=" ++ show i ++ ", j=" ++ show j
        else mtx ! idx mm i j

infixl 9 ///

-- | Update a matrix by a list of (/i/,/j/,/m_i_j/) pairs
-- (all indexes assumed in range of original matrix).
(///) :: CLMatrix a -> [(Int,Int,a)] -> CLMatrix a
(///) mm@(CLMatrix m n t mtx) l =
    CLMatrix m n t (mtx // [ (idx mm i j,e) | (i,j,e) <- l ])

-- | Construct an 'CLMatrix' from a list such as @[[1,0],[4,-5]]@.
--
-- Assumes that all inner lists are the same length, 
-- and that the overall list is of length ≥1.
matrix_from_list :: [[a]] -> CLMatrix a
matrix_from_list [] = error "matrixFromList: empty list"
matrix_from_list rs@(r0:_) = CLMatrix (length rs) (length r0) False $
   array ((0,0), (length rs - 1, length r0 - 1))
   [ ((i,j),x) | (ri,i) <- zip rs [0..], (x,j) <- zip ri [0..] ]

-- | Delete a row of a matrix
delete_row :: Int -> CLMatrix a -> CLMatrix a
delete_row i0 mm@(CLMatrix m n t mtx) =
  if 0 <= i0 && i0 < rows mm
  then
    if t then CLMatrix m (n-1) t $ ixmap ((0,0),(m-1,n-2)) (\(j,i) -> (j,f i)) mtx
    else CLMatrix (m-1) n t $ ixmap ((0,0),(m-2,n-1)) (\(i,j) -> (f i,j)) mtx
  else error "delete_row: row out of range"
    where f i = if i < i0 then i else i+1

-- | Delete the first column of a matrix
delete_col :: Int -> CLMatrix a -> CLMatrix a
delete_col j0 = transpose . (delete_row j0) . transpose

-- * Smith reduction

-- | @'elim_entry_with_pivot' /M/ /i/ /j/ /j'/@: apply elementary column operations 
-- to /M/ (equivalently, post-multiply by an invertible matrix) to
-- obtain /M'/ such that /M'/[sub /i/,/j/] is gcd(/M/[sub /i/,/j/], /M/[sub /i/,/j'/])
-- and /M'/[sub /i/,/j'/] is 0.
elim_entry_with_pivot :: (Integral int) => CLMatrix int -> Int -> Int -> Int -> CLMatrix int
elim_entry_with_pivot m i0 j0 j1 =
  let a = m !!! (i0,j0)
      b = m !!! (i0,j1)
  in if (a == 0 && b == 0) then m
  else
  let (d,x,y) = extended_euclid a b
      a' = a `div` d
      b' = b `div` d
  -- know that [x a + y b == d] and [d /= 0], so the matrix [[x,y],[−b',a']]
  -- is invertible; so premultiplication by it does not change the group
  -- presentation (and indeed could be obtained as a combination of elementary
  -- column operations).
  in m /// [ (i,j0, (x * m !!! (i,j0)) + (y * m !!! (i,j1))) | i <- row_list m ]
       /// [ (i,j1, (-b' * m !!! (i,j0)) + (a' * m !!! (i,j1))) | i <- row_list m]

-- | Given a matrix, repeatedly use 'elim_entry_with_pivot' to put the
-- top row into clean form (/d/,0,…,0).
clean_first_row :: (Integral int) => CLMatrix int -> CLMatrix int
clean_first_row m0 =
  foldl (\m j -> elim_entry_with_pivot m 0 0 j) m0 (tail $ col_list m0)

-- | Dual to 'clean_first_row'.
clean_first_col :: (Integral int) => CLMatrix int -> CLMatrix int
clean_first_col = transpose . clean_first_row . transpose

-- | Given a matrix, repeatedly apply 'clean_first_row' and its analogue
-- on columns until the first row and column are both in clean form.
clean_first_row_col :: (Integral int) => CLMatrix int -> CLMatrix int
clean_first_row_col m =
  if not $ all (==0) [ m !!! (0,j) | j <- tail $ col_list m ]
  then clean_first_row_col $ clean_first_row m
  else if not $ all (==0) [ m !!! (i,0) | i <- tail $ row_list m ]
  then clean_first_row_col $ clean_first_col m
  else m

-- * Structure of Abelian Groups

-- | Given a matrix, taken as presenting an Abelian group (with generators
-- corresponding to columns of the matrix, and relations specified by the 
-- rows), compute the structure constants of the group, not necessarily sorted.
--
-- That is, return a list of natural numbers [/n/[sub 0],…,/n/[sub /s/]] 
-- such that the group given by the input presentation is isomorphic to the
-- product of the cyclic groups ℤ\/(/n/[sub /i/]).
structure_constants_from_matrix  :: (Show int, Integral int) => CLMatrix int -> [int]
structure_constants_from_matrix m =
  if cols m == 0 then []
  else if rows m == 0 then (replicate (cols m) 0)
  else let m' = clean_first_row_col m
  in (abs $ m' !!! (0,0))
     : (structure_constants_from_matrix $ delete_row 0 $ delete_col 0 m')

-- | Given a matrix, taken as presenting an Abelian group,
-- compute the order of the group.
--
-- Returns 0 if the group is of infinite order.
group_order_from_matrix :: (Show int, Integral int) => CLMatrix int -> int
group_order_from_matrix = product . structure_constants_from_matrix