{-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LINE 1 "Quipper/Algorithms/CL/SmithReduction.hs" #-} -- | This module provides functions for reducing (non-square) matrices -- towards Smith Normal Form, and hence for computing the structure of -- finitely-presented Abelian groups. -- -- The SNF transformation is similar to Gaussian elimination, but over integer matrices, -- (more generally, matrices over any principal ideal domain) -- -- For background on how this is used to compute the structure of Abelian groups, -- see the MathOverflow question <http://mathoverflow.net/questions/12009/>, -- in particular Greg Kuperberg’s answer <http://mathoverflow.net/questions/12009#12053>. -- -- We do not implement full SNF reduction here, but rather just as much as is -- needed to compute the structure of finitely presented Abelian groups from -- matrix presentations. module Quipper.Algorithms.CL.SmithReduction where import Data.Array import Quipper.Algorithms.CL.Auxiliary -- * Matrix type and basic access functions. -- | A data type to hold an /m/×/n/ matrix (/M/[sub /ij/]), -- with entries from an arbitrary type @a@. -- -- The fields are: integers /m/ and /n/; a flag /t/ to indicate that a matrix -- should be considered formally transposed; and an /m/×/n/ array /M/ -- containing the entries. When /t/ is 'False', /m/ is the number of rows, -- and /n/ the number of columns; when /t/ is 'True', this is reversed. -- -- (The point of the flag is to allow efficient transposition, and hence to -- allow operations on rows to be implemented in terms of the corresponding -- operations on columns without loss of efficiency.) data CLMatrix a = CLMatrix Int Int Bool (Array (Int, Int) a) deriving (Show) -- | The transpose of a matrix transpose :: CLMatrix a -> CLMatrix a transpose (CLMatrix m n t mtx) = CLMatrix m n (not t) mtx -- | The number of rows of a matrix rows :: CLMatrix a -> Int rows (CLMatrix m n t _) = if t then n else m -- | The number of columns of a matrix cols :: CLMatrix a -> Int cols (CLMatrix m n t _) = if t then m else n -- | The row indices of a matrix. row_list :: CLMatrix a -> [Int] row_list m = [0..((rows m)-1)] -- | The column indices of a matrix. col_list :: CLMatrix a -> [Int] col_list m = [0..((cols m)-1)] -- | An index tuple for a matrix, at a given row and column idx :: CLMatrix a -> Int -> Int -> (Int, Int) idx (CLMatrix _ _ t _) i j = if t then (j,i) else (i,j) infix 9 !!! -- | The matrix entry at a given row and column (!!!) :: CLMatrix a -> (Int,Int) -> a (!!!) mm@(CLMatrix m n t mtx) (i,j) = if (i >= rows mm || j >= cols mm) then error $ "Matrix entry lookup (!!!): bad index i=" ++ show i ++ ", j=" ++ show j else mtx ! idx mm i j infixl 9 /// -- | Update a matrix by a list of (/i/,/j/,/m_i_j/) pairs -- (all indexes assumed in range of original matrix). (///) :: CLMatrix a -> [(Int,Int,a)] -> CLMatrix a (///) mm@(CLMatrix m n t mtx) l = CLMatrix m n t (mtx // [ (idx mm i j,e) | (i,j,e) <- l ]) -- | Construct an 'CLMatrix' from a list such as @[[1,0],[4,-5]]@. -- -- Assumes that all inner lists are the same length, -- and that the overall list is of length ≥1. matrix_from_list :: [[a]] -> CLMatrix a matrix_from_list [] = error "matrixFromList: empty list" matrix_from_list rs@(r0:_) = CLMatrix (length rs) (length r0) False $ array ((0,0), (length rs - 1, length r0 - 1)) [ ((i,j),x) | (ri,i) <- zip rs [0..], (x,j) <- zip ri [0..] ] -- | Delete a row of a matrix delete_row :: Int -> CLMatrix a -> CLMatrix a delete_row i0 mm@(CLMatrix m n t mtx) = if 0 <= i0 && i0 < rows mm then if t then CLMatrix m (n-1) t $ ixmap ((0,0),(m-1,n-2)) (\(j,i) -> (j,f i)) mtx else CLMatrix (m-1) n t $ ixmap ((0,0),(m-2,n-1)) (\(i,j) -> (f i,j)) mtx else error "delete_row: row out of range" where f i = if i < i0 then i else i+1 -- | Delete the first column of a matrix delete_col :: Int -> CLMatrix a -> CLMatrix a delete_col j0 = transpose . (delete_row j0) . transpose -- * Smith reduction -- | @'elim_entry_with_pivot' /M/ /i/ /j/ /j'/@: apply elementary column operations -- to /M/ (equivalently, post-multiply by an invertible matrix) to -- obtain /M'/ such that /M'/[sub /i/,/j/] is gcd(/M/[sub /i/,/j/], /M/[sub /i/,/j'/]) -- and /M'/[sub /i/,/j'/] is 0. elim_entry_with_pivot :: (Integral int) => CLMatrix int -> Int -> Int -> Int -> CLMatrix int elim_entry_with_pivot m i0 j0 j1 = let a = m !!! (i0,j0) b = m !!! (i0,j1) in if (a == 0 && b == 0) then m else let (d,x,y) = extended_euclid a b a' = a `div` d b' = b `div` d -- know that [x a + y b == d] and [d /= 0], so the matrix [[x,y],[−b',a']] -- is invertible; so premultiplication by it does not change the group -- presentation (and indeed could be obtained as a combination of elementary -- column operations). in m /// [ (i,j0, (x * m !!! (i,j0)) + (y * m !!! (i,j1))) | i <- row_list m ] /// [ (i,j1, (-b' * m !!! (i,j0)) + (a' * m !!! (i,j1))) | i <- row_list m] -- | Given a matrix, repeatedly use 'elim_entry_with_pivot' to put the -- top row into clean form (/d/,0,…,0). clean_first_row :: (Integral int) => CLMatrix int -> CLMatrix int clean_first_row m0 = foldl (\m j -> elim_entry_with_pivot m 0 0 j) m0 (tail $ col_list m0) -- | Dual to 'clean_first_row'. clean_first_col :: (Integral int) => CLMatrix int -> CLMatrix int clean_first_col = transpose . clean_first_row . transpose -- | Given a matrix, repeatedly apply 'clean_first_row' and its analogue -- on columns until the first row and column are both in clean form. clean_first_row_col :: (Integral int) => CLMatrix int -> CLMatrix int clean_first_row_col m = if not $ all (==0) [ m !!! (0,j) | j <- tail $ col_list m ] then clean_first_row_col $ clean_first_row m else if not $ all (==0) [ m !!! (i,0) | i <- tail $ row_list m ] then clean_first_row_col $ clean_first_col m else m -- * Structure of Abelian Groups -- | Given a matrix, taken as presenting an Abelian group (with generators -- corresponding to columns of the matrix, and relations specified by the -- rows), compute the structure constants of the group, not necessarily sorted. -- -- That is, return a list of natural numbers [/n/[sub 0],…,/n/[sub /s/]] -- such that the group given by the input presentation is isomorphic to the -- product of the cyclic groups ℤ\/(/n/[sub /i/]). structure_constants_from_matrix :: (Show int, Integral int) => CLMatrix int -> [int] structure_constants_from_matrix m = if cols m == 0 then [] else if rows m == 0 then (replicate (cols m) 0) else let m' = clean_first_row_col m in (abs $ m' !!! (0,0)) : (structure_constants_from_matrix $ delete_row 0 $ delete_col 0 m') -- | Given a matrix, taken as presenting an Abelian group, -- compute the order of the group. -- -- Returns 0 if the group is of infinite order. group_order_from_matrix :: (Show int, Integral int) => CLMatrix int -> int group_order_from_matrix = product . structure_constants_from_matrix