module Quant.VolSurf (
VolSurf (..)
, FlatSurf (..)
, GridSurf (..)
) where
import Quant.Math.Interpolation
import Quant.YieldCurve
import Quant.Time
import qualified Data.Map as M
class VolSurf a where
vol :: VolSurf a => a -> Double -> Time -> Double
var :: VolSurf a => a -> Double -> Time -> Double
var vs s t = v*v*t'
where
v = vol vs s t
t' = timeFromZero t
localVol :: (VolSurf a, YieldCurve b) => a
-> Double
-> b
-> Double
-> Time
-> Double
localVol v s0 rcurve k t
| w==0.0 || solution<0.0 = sqrt dwdt
| otherwise = sqrt solution
where
dr = disc rcurve t
f = s0/dr
y = log $ k/f
dy = 1.0E-6
kp = k*exp dy
km = k/exp dy
[w, wp, wm] = map (\x->var v (x/s0) t) [k, kp, km]
dwdy = (wpwm)/2.0/dy
d2wdy2 = (wp2.0*w+wm)/dy/dy
dt = min 0.0001 (timeFromZero t/2.0)
dwdt = let
strikept = k*dr/drpt
strikemt = k*dr/drmt
drpt = disc rcurve $ timeOffset t dt
drmt = disc rcurve $ timeOffset t (dt)
in case timeFromZero t of
0 -> (var v (strikept/s0) (timeOffset t dt) w)/dt
_ -> (var v (strikept/s0) (timeOffset t dt)var v (strikemt/s0) (timeOffset t (dt)))/2.0/dt
solution = dwdt/(1.0y/w*dwdy+0.25*(0.251.0/w+y*y/w/w)*dwdy*dwdy+0.5*d2wdy2)
data FlatSurf = FlatSurf Double
instance VolSurf FlatSurf where
vol (FlatSurf x) _ _ = x
data GridSurf = GridSurf {
gridStrikes :: [Double]
, gridMaturities :: [Time]
, gridQuotes :: M.Map (Double, Time) Double
, gridStrikeInterpolator :: Interpolator1d
, gridTimeInterpolator :: Interpolator1d
}
instance VolSurf GridSurf where
vol (GridSurf sts mats quotes vInterp tInterp) strike t = tInterp mats' interpolatedVs $ timeFromZero t
where
mats' = map timeFromZero mats
interpolatedVs = map ((\k -> vInterp sts k strike) . allForT) mats
allForT t' = map (\ x -> quotes M.! (x, t')) sts