{-# LANGUAGE ViewPatterns #-} -- | -- Module : Numeric.QuadraticIrrational -- Description : An implementation of quadratic irrationals -- Copyright : © 2014 Johan Kiviniemi -- License : MIT -- Maintainer : Johan Kiviniemi <devel@johan.kiviniemi.name> -- Stability : provisional -- Portability : ViewPatterns -- -- A library for exact computation with -- <http://en.wikipedia.org/wiki/Quadratic_irrational quadratic irrationals> -- with support for exact conversion from and to -- <http://en.wikipedia.org/wiki/Periodic_continued_fraction (potentially periodic) simple continued fractions>. -- -- A quadratic irrational is a number that can be expressed in the form -- -- > (a + b √c) / d -- -- where @a@, @b@ and @d@ are integers and @c@ is a square-free natural number. -- -- Some examples of such numbers are -- -- * @7/2@, -- -- * @√2@, -- -- * @(1 + √5)\/2@ -- (<http://en.wikipedia.org/wiki/Golden_ratio the golden ratio>), -- -- * solutions to quadratic equations with rational constants – the -- <http://en.wikipedia.org/wiki/Quadratic_formula quadratic formula> has a -- familiar shape. -- -- A simple continued fraction is a number expressed in the form -- -- > a + 1/(b + 1/(c + 1/(d + 1/(e + …)))) -- -- or alternatively written as -- -- > [a; b, c, d, e, …] -- -- where @a@ is an integer and @b@, @c@, @d@, @e@, … are positive integers. -- -- Every finite SCF represents a rational number and every infinite, periodic -- SCF represents a quadratic irrational. -- -- > 3.5 = [3; 2] -- > (1+√5)/2 = [1; 1, 1, 1, …] -- > √2 = [1; 2, 2, 2, …] module Numeric.QuadraticIrrational ( -- * Constructors and deconstructors QI, qi, qi', runQI, runQI', unQI, unQI' , -- * Lenses _qi, _qi', _qiABD, _qiA, _qiB, _qiC, _qiD , -- * Numerical operations qiZero, qiOne, qiIsZero , qiToFloat , qiAddI, qiSubI, qiMulI, qiDivI , qiAddR, qiSubR, qiMulR, qiDivR , qiNegate, qiRecip, qiAdd, qiSub, qiMul, qiDiv, qiPow , qiFloor , -- * Continued fractions continuedFractionToQI, qiToContinuedFraction , continuedFractionApproximate , module Numeric.QuadraticIrrational.CyclicList ) where import Control.Applicative import Control.Monad.State import qualified Data.Foldable as F import Data.List import Data.Maybe import Data.Ratio import qualified Data.Set as Set import Math.NumberTheory.Powers.Squares import Math.NumberTheory.Primes.Factorisation import Text.Read import Numeric.QuadraticIrrational.CyclicList import Numeric.QuadraticIrrational.Internal.Lens -- $setup -- >>> import Data.Number.CReal -- | @(a + b √c) \/ d@ data QI = QI !Integer !Integer !Integer !Integer deriving (Eq) instance Show QI where showsPrec p (QI a b c d) = showParen (p > 10) $ showString "qi " . showsPrec 11 a . showChar ' ' . showsPrec 11 b . showChar ' ' . showsPrec 11 c . showChar ' ' . showsPrec 11 d instance Read QI where readPrec = parens rQI where rQI = prec 10 $ do Ident "qi" <- lexP qi <$> step readPrec <*> step readPrec <*> step readPrec <*> step readPrec readListPrec = readListPrecDefault type QITuple = (Integer, Integer, Integer, Integer) -- | Given @a@, @b@, @c@ and @d@ such that @n = (a + b √c)\/d@, constuct a 'QI' -- corresponding to @n@. -- -- >>> qi 3 4 5 6 -- qi 3 4 5 6 -- -- The fractions are reduced: -- -- >>> qi 30 40 5 60 -- qi 3 4 5 6 -- -- If @b = 0@ then @c@ is zeroed and vice versa: -- -- >>> qi 3 0 42 1 -- qi 3 0 0 1 -- -- >>> qi 3 42 0 1 -- qi 3 0 0 1 -- -- The @b √c@ term is simplified: -- -- >>> qi 0 1 (5*5*6) 1 -- qi 0 5 6 1 -- -- If @c = 1@ (after simplification) then @b@ is moved to @a@: -- -- >>> qi 1 5 (2*2) 1 -- qi 11 0 0 1 qi :: Integer -- ^ a -> Integer -- ^ b -> Integer -- ^ c -> Integer -- ^ d -> QI qi a b (nonNegative "qi" -> c) (nonZero "qi" -> d) | b == 0 = reduceCons a 0 0 d | c == 0 = reduceCons a 0 0 d | c == 1 = reduceCons (a + b) 0 0 d | otherwise = simplifyReduceCons a b c d {-# INLINE qi #-} -- Construct a 'QI' without simplifying @b √c@. Make sure it has already been -- simplified. qiNoSimpl :: Integer -> Integer -> Integer -> Integer -> QI qiNoSimpl a b (nonNegative "qiNoSimpl" -> c) (nonZero "qiNoSimpl" -> d) | b == 0 = reduceCons a 0 0 d | c == 0 = reduceCons a 0 0 d | c == 1 = reduceCons (a + b) 0 0 d | otherwise = reduceCons a b c d {-# INLINE qiNoSimpl #-} -- Simplify @b √c@ before constructing a 'QI'. simplifyReduceCons :: Integer -> Integer -> Integer -> Integer -> QI simplifyReduceCons a b (nonZero "simplifyReduceCons" -> c) d | c' == 1 = reduceCons (a + b') 0 0 d | otherwise = reduceCons a b' c' d where ~(b', c') = separateSquareFactors b c {-# INLINE simplifyReduceCons #-} -- | Given @b@ and @c@ such that @n = b √c@, return a potentially simplified -- @(b, c)@. separateSquareFactors :: Integer -> Integer -> (Integer, Integer) separateSquareFactors b (nonNegative "separateSquareFactors" -> c) = case foldl' go (1,1) (factorise c) of ~(bMul, c') -> (b*bMul, c') where go :: (Integer, Integer) -> (Integer, Int) -> (Integer, Integer) go ~(i, j) ~(fac, pow) = i `seq` j `seq` fac `seq` pow `seq` if even pow then (i*fac^(pow `div` 2), j) else (i*fac^((pow-1) `div` 2), j*fac) -- Reduce the @a@, @b@, @d@ factors before constructing a 'QI'. reduceCons :: Integer -> Integer -> Integer -> Integer -> QI reduceCons a b c (nonZero "reduceCons" -> d) = QI (a `quot` q) (b `quot` q) c (d `quot` q) where q = signum d * (a `gcd` b `gcd` d) {-# INLINE reduceCons #-} -- | Given @a@, @b@ and @c@ such that @n = a + b √c@, constuct a 'QI' -- corresponding to @n@. -- -- >>> qi' 0.5 0.7 2 -- qi 5 7 2 10 qi' :: Rational -- ^ a -> Rational -- ^ b -> Integer -- ^ c -> QI qi' a b (nonNegative "qi'" -> c) = n where -- (aN/aD) + (bN/bD) √c = ((aN bD) + (bN aD) √c) / (aD bD) n = qi (aN*bD) (bN*aD) c (aD*bD) (aN, aD) = (numerator a, denominator a) (bN, bD) = (numerator b, denominator b) {-# INLINE qi' #-} -- | Given @n@ and @f@ such that @n = (a + b √c)\/d@, run @f a b c d@. -- -- >>> runQI (qi 3 4 5 6) (\a b c d -> (a,b,c,d)) -- (3,4,5,6) runQI :: QI -> (Integer -> Integer -> Integer -> Integer -> a) -> a runQI (QI a b c d) f = f a b c d {-# INLINE runQI #-} -- | Given @n@ and @f@ such that @n = a + b √c@, run @f a b c@. -- -- >>> runQI' (qi' 0.5 0.7 2) (\a b c -> (a, b, c)) -- (1 % 2,7 % 10,2) runQI' :: QI -> (Rational -> Rational -> Integer -> a) -> a runQI' (QI a b c d) f = f (a % d) (b % d) c {-# INLINE runQI' #-} -- | Given @n@ such that @n = (a + b √c)\/d@, return @(a, b, c, d)@. -- -- >>> unQI (qi 3 4 5 6) -- (3,4,5,6) unQI :: QI -> (Integer, Integer, Integer, Integer) unQI n = runQI n (,,,) {-# INLINE unQI #-} -- | Given @n@ such that @n = a + b √c@, return @(a, b, c)@. -- -- >>> unQI' (qi' 0.5 0.7 2) -- (1 % 2,7 % 10,2) unQI' :: QI -> (Rational, Rational, Integer) unQI' n = runQI' n (,,) {-# INLINE unQI' #-} -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @(a, b, c, d)@. -- -- >>> view _qi (qi 3 4 5 6) -- (3,4,5,6) -- -- >>> over _qi (\(a,b,c,d) -> (a+10, b+10, c+10, d+10)) (qi 3 4 5 6) -- qi 13 14 15 16 _qi :: Lens' QI (Integer, Integer, Integer, Integer) _qi f n = (\ ~(a',b',c',d') -> qi a' b' c' d') <$> f (unQI n) {-# INLINE _qi #-} -- | Given a 'QI' corresponding to @n = a + b √c@, access @(a, b, c)@. -- -- >>> view _qi' (qi' 0.5 0.7 2) -- (1 % 2,7 % 10,2) -- -- >>> over _qi' (\(a,b,c) -> (a/5, b/6, c*3)) (qi 3 4 5 6) -- qi 9 10 15 90 _qi' :: Lens' QI (Rational, Rational, Integer) _qi' f n = (\ ~(a',b',c') -> qi' a' b' c') <$> f (unQI' n) {-# INLINE _qi' #-} -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @(a, b, d)@. -- Avoids having to simplify @b √c@ upon reconstruction. -- -- >>> view _qiABD (qi 3 4 5 6) -- (3,4,6) -- -- >>> over _qiABD (\(a,b,d) -> (a+10, b+10, d+10)) (qi 3 4 5 6) -- qi 13 14 5 16 _qiABD :: Lens' QI (Integer, Integer, Integer) _qiABD f (unQI -> ~(a,b,c,d)) = (\ ~(a',b',d') -> qiNoSimpl a' b' c d') <$> f (a,b,d) {-# INLINE _qiABD #-} -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @a@. It is more -- efficient to use '_qi' or '_qiABD' when modifying multiple terms at once. -- -- >>> view _qiA (qi 3 4 5 6) -- 3 -- -- >>> over _qiA (+ 10) (qi 3 4 5 6) -- qi 13 4 5 6 _qiA :: Lens' QI Integer _qiA = _qiABD . go where go f ~(a,b,d) = (\a' -> (a',b,d)) <$> f a -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @b@. It is more -- efficient to use '_qi' or '_qiABD' when modifying multiple terms at once. -- -- >>> view _qiB (qi 3 4 5 6) -- 4 -- -- >>> over _qiB (+ 10) (qi 3 4 5 6) -- qi 3 14 5 6 _qiB :: Lens' QI Integer _qiB = _qiABD . go where go f ~(a,b,d) = (\b' -> (a,b',d)) <$> f b -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @c@. It is more -- efficient to use '_qi' or '_qiABD' when modifying multiple terms at once. -- -- >>> view _qiC (qi 3 4 5 6) -- 5 -- -- >>> over _qiC (+ 10) (qi 3 4 5 6) -- qi 3 4 15 6 _qiC :: Lens' QI Integer _qiC = _qi . go where go f ~(a,b,c,d) = (\c' -> (a,b,c',d)) <$> f c -- | Given a 'QI' corresponding to @n = (a + b √c)\/d@, access @d@. It is more -- efficient to use '_qi' or '_qiABD' when modifying multiple terms at once. -- -- >>> view _qiD (qi 3 4 5 6) -- 6 -- -- >>> over _qiD (+ 10) (qi 3 4 5 6) -- qi 3 4 5 16 _qiD :: Lens' QI Integer _qiD = _qiABD . go where go f ~(a,b,d) = (\d' -> (a,b,d')) <$> f d -- | The constant zero. -- -- >>> qiZero -- qi 0 0 0 1 qiZero :: QI qiZero = qi 0 0 0 1 {-# INLINE qiZero #-} -- | The constant one. -- -- >>> qiOne -- qi 1 0 0 1 qiOne :: QI qiOne = qi 1 0 0 1 {-# INLINE qiOne #-} -- | Check if the value is zero. -- -- >>> map qiIsZero [qiZero, qiOne, qiSubR (qi 7 0 0 2) 3.5] -- [True,False,True] qiIsZero :: QI -> Bool -- If b = 0 then c = 0 and vice versa, guaranteed by the constructor. qiIsZero (unQI -> ~(a,b,_,_)) = a == 0 && b == 0 {-# INLINE qiIsZero #-} -- | Convert a 'QI' number into a 'Floating' one. -- -- >>> qiToFloat (qi 3 4 5 6) == ((3 + 4 * sqrt 5)/6 :: Double) -- True qiToFloat :: Floating a => QI -> a qiToFloat (unQI -> ~(a,b,c,d)) = (fromInteger a + fromInteger b * sqrt (fromInteger c)) / fromInteger d {-# INLINE qiToFloat #-} -- | Add an 'Integer' to a 'QI'. -- -- >>> qi 3 4 5 6 `qiAddI` 1 -- qi 9 4 5 6 qiAddI :: QI -> Integer -> QI qiAddI n x = over _qiABD go n where go ~(a,b,d) = a `seq` b `seq` d `seq` x `seq` (a + d*x, b, d) {-# INLINE qiAddI #-} -- | Add a 'Rational' to a 'QI'. -- -- >>> qi 3 4 5 6 `qiAddR` 1.2 -- qi 51 20 5 30 qiAddR :: QI -> Rational -> QI qiAddR n x = over _qiABD go n where -- n = (a + b √c)/d + xN/xD -- n = ((a + b √c) xD)/(d xD) + (d xN)/(d xD) -- n = ((a xD + d xN) + b xD √c)/(d xD) go ~(a,b,d) = a `seq` b `seq` d `seq` xN `seq` xD `seq` (a*xD + d*xN, b*xD, d*xD) (xN, xD) = (numerator x, denominator x) {-# INLINE qiAddR #-} -- | Subtract an 'Integer' from a 'QI'. -- -- >>> qi 3 4 5 6 `qiSubI` 1 -- qi (-3) 4 5 6 qiSubI :: QI -> Integer -> QI qiSubI n x = qiAddI n (negate x) {-# INLINE qiSubI #-} -- | Subtract a 'Rational' from a 'QI'. -- -- >>> qi 3 4 5 6 `qiSubR` 1.2 -- qi (-21) 20 5 30 qiSubR :: QI -> Rational -> QI qiSubR n x = qiAddR n (negate x) {-# INLINE qiSubR #-} -- | Multiply a 'QI' by an 'Integer'. -- -- >>> qi 3 4 5 6 `qiMulI` 2 -- qi 3 4 5 3 qiMulI :: QI -> Integer -> QI qiMulI n x = over _qiABD go n where go ~(a,b,d) = a `seq` b `seq` d `seq` x `seq` (a*x, b*x, d) {-# INLINE qiMulI #-} -- | Multiply a 'QI' by a 'Rational'. -- -- >>> qi 3 4 5 6 `qiMulR` 0.5 -- qi 3 4 5 12 qiMulR :: QI -> Rational -> QI qiMulR n x = over _qiABD go n where -- n = (a + b √c)/d xN/xD -- n = (a xN + b xN √c)/(d xD) go ~(a,b,d) = a `seq` b `seq` d `seq` xN `seq` xD `seq` (a*xN, b*xN, d*xD) (xN, xD) = (numerator x, denominator x) {-# INLINE qiMulR #-} -- | Divice a 'QI' by an 'Integer'. -- -- >>> qi 3 4 5 6 `qiDivI` 2 -- qi 3 4 5 12 qiDivI :: QI -> Integer -> QI qiDivI n (nonZero "qiDivI" -> x) = over _qiABD go n where go ~(a,b,d) = a `seq` b `seq` d `seq` x `seq` (a, b, d*x) {-# INLINE qiDivI #-} -- | Divice a 'QI' by a 'Rational'. -- -- >>> qi 3 4 5 6 `qiDivR` 0.5 -- qi 3 4 5 3 qiDivR :: QI -> Rational -> QI qiDivR n (nonZero "qiDivR" -> x) = qiMulR n (recip x) {-# INLINE qiDivR #-} -- | Negate a 'QI'. -- -- >>> qiNegate (qi 3 4 5 6) -- qi (-3) (-4) 5 6 qiNegate :: QI -> QI qiNegate n = over _qiABD go n where go ~(a,b,d) = a `seq` b `seq` d `seq` (negate a, negate b, d) {-# INLINE qiNegate #-} -- | Compute the reciprocal of a 'QI'. -- -- >>> qiRecip (qi 5 0 0 2) -- Just (qi 2 0 0 5) -- -- >>> qiRecip (qi 0 1 5 2) -- Just (qi 0 2 5 5) -- -- >>> qiRecip qiZero -- Nothing qiRecip :: QI -> Maybe QI qiRecip n@(unQI -> ~(a,b,c,d)) -- 1/((a + b √c)/d) = -- d/(a + b √c) = -- d (a − b √c) / ((a + b √c) (a − b √c)) = -- d (a − b √c) / (a² − b² c) = -- (a d − b d √c) / (a² − b² c) | qiIsZero n = Nothing | denom == 0 = error ("qiRecip: Failed for " ++ show n) | otherwise = Just (set _qiABD (a * d, negate (b * d), denom) n) where denom = (a*a - b*b * c) -- | Add two 'QI's if the square root terms are the same or zeros. -- -- >>> qi 3 4 5 6 `qiAdd` qiOne -- Just (qi 9 4 5 6) -- -- >>> qi 3 4 5 6 `qiAdd` qi 3 4 5 6 -- Just (qi 3 4 5 3) -- -- >>> qi 0 1 5 1 `qiAdd` qi 0 1 6 1 -- Nothing qiAdd :: QI -> QI -> Maybe QI qiAdd n@(unQI -> ~(a,b,c,d)) n'@(unQI -> ~(a',b',c',d')) -- n = (a + b √c)/d + (a' + b' √c')/d' -- n = ((a + b √c) d' + (a' + b' √c') d)/(d d') -- if c = c' then n = ((a d' + a' d) + (b d' + b' d) √c)/(d d') | c == 0 = Just (set _qiABD (a*d' + a'*d, b'*d, d*d') n') | c' == 0 = Just (set _qiABD (a*d' + a'*d, b*d' , d*d') n) | c == c' = Just (set _qiABD (a*d' + a'*d, b*d' + b'*d, d*d') n) | otherwise = Nothing -- | Subtract two 'QI's if the square root terms are the same or zeros. -- -- >>> qi 3 4 5 6 `qiSub` qiOne -- Just (qi (-3) 4 5 6) -- -- >>> qi 3 4 5 6 `qiSub` qi 3 4 5 6 -- Just (qi 0 0 0 1) -- -- >>> qi 0 1 5 1 `qiSub` qi 0 1 6 1 -- Nothing qiSub :: QI -> QI -> Maybe QI qiSub n n' = qiAdd n (qiNegate n') -- | Multiply two 'QI's if the square root terms are the same or zeros. -- -- >>> qi 3 4 5 6 `qiMul` qiZero -- Just (qi 0 0 0 1) -- -- >>> qi 3 4 5 6 `qiMul` qiOne -- Just (qi 3 4 5 6) -- -- >>> qi 3 4 5 6 `qiMul` qi 3 4 5 6 -- Just (qi 89 24 5 36) -- -- >>> qi 0 1 5 1 `qiMul` qi 0 1 6 1 -- Nothing qiMul :: QI -> QI -> Maybe QI qiMul n@(unQI -> ~(a,b,c,d)) n'@(unQI -> ~(a',b',c',d')) -- n = (a + b √c)/d (a' + b' √c')/d' -- n = (a a' + a b' √c' + a' b √c + b b' √c √c')/(d d') -- if c = 0 then n = (a a' + a b' √c')/(d d') -- if c' = 0 then n = (a a' + a' b √c)/(d d') -- if c = c' then n = ((a a' + b b' c) + (a b' + a' b) √c)/(d d') | c == 0 = Just (set _qiABD (a*a' , a*b' , d*d') n') | c' == 0 = Just (set _qiABD (a*a' , a'*b, d*d') n) | c == c' = Just (set _qiABD (a*a' + b*b'*c, a*b' + a'*b, d*d') n) | otherwise = Nothing -- | Divide two 'QI's if the square root terms are the same or zeros. -- -- >>> qi 3 4 5 6 `qiDiv` qiZero -- Nothing -- -- >>> qi 3 4 5 6 `qiDiv` qiOne -- Just (qi 3 4 5 6) -- -- >>> qi 3 4 5 6 `qiDiv` qi 3 4 5 6 -- Just (qi 1 0 0 1) -- -- >>> qi 3 4 5 6 `qiDiv` qi 0 1 5 1 -- Just (qi 20 3 5 30) -- -- >>> qi 0 1 5 1 `qiDiv` qi 0 1 6 1 -- Nothing qiDiv :: QI -> QI -> Maybe QI qiDiv n n' = qiMul n =<< qiRecip n' -- | Exponentiate a 'QI' to an 'Integer' power. -- -- >>> qi 3 4 5 6 `qiPow` 0 -- qi 1 0 0 1 -- -- >>> qi 3 4 5 6 `qiPow` 1 -- qi 3 4 5 6 -- -- >>> qi 3 4 5 6 `qiPow` 2 -- qi 89 24 5 36 qiPow :: QI -> Integer -> QI qiPow num (nonNegative "qiPow" -> pow) = go num pow where go _ 0 = qiOne go n 1 = n go n p | even p = go (sudoQIMul n n) (p `div` 2) | otherwise = go' (sudoQIMul n n) ((p-1) `div` 2) n -- Like go but multiplied with n'. go' _ 0 n' = n' go' n 1 n' = sudoQIMul n n' go' n p n' | even p = go' (sudoQIMul n n) (p `div` 2) n' | otherwise = go' (sudoQIMul n n) ((p-1) `div` 2) (sudoQIMul n n') -- Multiplying a QI with its own power will always succeed. sudoQIMul n n' = case qiMul n n' of ~(Just m) -> m -- | Compute the floor of a 'QI'. -- -- >>> qiFloor (qi 10 0 0 2) -- 5 -- -- >>> qiFloor (qi 10 2 2 2) -- 6 -- -- >>> qiFloor (qi 10 2 5 2) -- 7 qiFloor :: QI -> Integer qiFloor (unQI -> ~(a,b,c,d)) = -- n = (a + b √c)/d -- n d = a + b √c -- n d = a + signum b · √(b² c) n_d `div` d where n_d = a + min (signum b * b2cLow) (signum b * b2cHigh) ~(b2cLow, b2cHigh) = iSqrtBounds (b*b * c) -- | Convert a (possibly periodic) simple continued fraction to a 'QI'. -- -- @[2; 2] = 2 + 1\/2 = 5\/2@. -- -- >>> continuedFractionToQI (2,NonCyc [2]) -- qi 5 0 0 2 -- -- The golden ratio is @[1; 1, 1, …]@. -- -- >>> showCReal 1000 (qiToFloat (continuedFractionToQI (1,Cyc [] 1 []))) -- "1.6180339887498948482045868343656381177203091798057628621354486227052604628189024497072072041893911374847540880753868917521266338622235369317931800607667263544333890865959395829056383226613199282902678806752087668925017116962070322210432162695486262963136144381497587012203408058879544547492461856953648644492410443207713449470495658467885098743394422125448770664780915884607499887124007652170575179788341662562494075890697040002812104276217711177780531531714101170466659914669798731761356006708748071013179523689427521948435305678300228785699782977834784587822891109762500302696156170025046433824377648610283831268330372429267526311653392473167111211588186385133162038400522216579128667529465490681131715993432359734949850904094762132229810172610705961164562990981629055520852479035240602017279974717534277759277862561943208275051312181562855122248093947123414517022373580577278616008688382952304592647878017889921990270776903895321968198615143780314997411069260886742962267575605231727775203536139362" -- -- >>> continuedFractionToQI (0,Cyc [83,78,65,75,69] 32 [66,65,68,71,69,82]) -- qi 987601513930253257378987883 1 14116473325908285531353005 81983584717737887813195873886 continuedFractionToQI :: (Integer, CycList Integer) -> QI continuedFractionToQI (i0_, is_) = qiAddI (go is_) i0_ where go (NonCyc as) = goNonCyc as qiZero go (Cyc as b bs) = goNonCyc as (goCyc (b:bs)) goNonCyc ((pos -> i):is) final = sudoQIRecip (qiAddI (goNonCyc is final) i) goNonCyc [] final = final goCyc is = sudoQIRecip (solvePeriodic is) -- x = (a x + b) / (c x + d) -- x (c x + d) = a x + b -- c x² + d x = a x + b -- c x² + (d − a) x − b = 0 -- Apply quadratic formula, positive solution only. solvePeriodic is = case solvePeriodic' is of ~(a,b,c,d) -> a `seq` b `seq` c `seq` d `seq` qfPos c (d - a) (negate b) where qfPos i j k = qi (negate j) 1 (j*j - 4*i*k) (2*i) -- i + 1/((a x + b) / (c x + d)) = -- i + (c x + d)/(a x + b) = -- ((a i x + b i + c x + d)/(a x + b) = -- ((a i + c) x + (b i + d))/(a x + b) solvePeriodic' ((pos -> i):is) = case solvePeriodic' is of ~(a,b,c,d) -> a `seq` b `seq` c `seq` d `seq` i `seq` (a*i+c, b*i+d, a, b) -- x = (1 x + 0) / (0 x + 1) solvePeriodic' [] = (1,0,0,1) sudoQIRecip n = fromMaybe (error "continuedFractionToQI: Divide by zero") (qiRecip n) pos = positive "continuedFractionToQI" -- | Convert a 'QI' into a (possibly periodic) simple continued fraction. -- -- @5\/2 = 2 + 1\/2 = [2; 2]@. -- -- >>> qiToContinuedFraction (qi 5 0 0 2) -- (2,NonCyc [2]) -- -- The golden ratio is @(1 + √5)\/2@. We can compute the corresponding PCF. -- -- >>> qiToContinuedFraction (qi 1 1 5 2) -- (1,Cyc [] 1 []) -- -- >>> qiToContinuedFraction (qi 987601513930253257378987883 1 14116473325908285531353005 81983584717737887813195873886) -- (0,Cyc [83,78,65,75,69] 32 [66,65,68,71,69,82]) qiToContinuedFraction :: QI -> (Integer, CycList Integer) qiToContinuedFraction num | Just isLoopQI <- loopQI = case break isLoopQI cfs of (preLoop, ~(i:postLoop)) -> let is = takeWhile (not . isLoopQI) postLoop in (i0, Cyc (map snd preLoop) (snd i) (map snd is)) | otherwise = (i0, NonCyc (map snd cfs)) where (i0, cfs) = qiToContinuedFractionList num loopQI :: Maybe ((QITuple,a) -> Bool) loopQI = evalState (go cfs) Set.empty where go ((n,_) : xs) = do haveSeen <- gets (Set.member n) modify (Set.insert n) if haveSeen then return (Just ((== n) . fst)) else go xs go [] = return Nothing qiToContinuedFractionList :: QI -> (Integer, [(QITuple, Integer)]) qiToContinuedFractionList num = case go (Just num) of -- There is always a first number. ~((_,i) : xs) -> (i, xs) where go (Just n) = (unQI n, i) : go (qiRecip (qiSubI n i)) where i = qiFloor n go Nothing = [] -- | Compute a rational partial evaluation of a simple continued fraction. -- -- Rational approximations that converge toward φ: -- -- >>> [ continuedFractionApproximate n (1, repeat 1) | n <- [0,3..18] ] -- [1 % 1,5 % 3,21 % 13,89 % 55,377 % 233,1597 % 987,6765 % 4181] continuedFractionApproximate :: F.Foldable f => Int -> (Integer, f Integer) -> Rational continuedFractionApproximate n (i0, F.toList -> is) = fromInteger i0 + foldr (\(pos -> i) r -> recip (fromInteger i + r)) 0 (take n is) where pos = positive "continuedFractionApproximate" iSqrtBounds :: Integer -> (Integer, Integer) iSqrtBounds n = (low, high) where low = integerSquareRoot n high | low*low == n = low | otherwise = low + 1 nonNegative :: (Num a, Ord a, Show a) => String -> a -> a nonNegative name = validate name "non-negative" (>= 0) {-# INLINE nonNegative #-} positive :: (Num a, Ord a, Show a) => String -> a -> a positive name = validate name "positive" (> 0) {-# INLINE positive #-} nonZero :: (Num a, Eq a, Show a) => String -> a -> a nonZero name = validate name "non-zero" (/= 0) {-# INLINE nonZero #-} validate :: Show a => String -> String -> (a -> Bool) -> a -> a validate name expected f a | f a = a | otherwise = error ("Numeric.QuadraticIrrational." ++ name ++ ": Got " ++ show a ++ ", expected " ++ expected) {-# INLINE validate #-}