{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE ScopedTypeVariables #-} import Control.Applicative import Control.Monad import Control.Monad.Fix (fix) import Control.Monad.Primitive import Control.Monad.ST import Data.Monoid import Data.Primitive import Data.Primitive.Array import Data.Primitive.ByteArray import Data.Primitive.Types import Data.Primitive.SmallArray import Data.Primitive.PrimArray import Data.Word import Data.Proxy (Proxy(..)) import GHC.Int import GHC.IO import GHC.Prim import Data.Function (on) #if MIN_VERSION_base(4,9,0) import Data.Semigroup (stimes) #endif import Test.Tasty (defaultMain,testGroup,TestTree) import Test.QuickCheck (Arbitrary,Arbitrary1,Gen,(===),CoArbitrary,Function) import qualified Test.Tasty.QuickCheck as TQC import qualified Test.QuickCheck as QC import qualified Test.QuickCheck.Classes as QCC import qualified Test.QuickCheck.Classes.IsList as QCCL import qualified Data.List as L main :: IO () main = do testArray testByteArray defaultMain $ testGroup "properties" [ testGroup "Array" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (Array Int))) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) #if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0) , lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 Array)) , lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 Array)) , lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 Array)) , lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 Array)) , lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 Array)) #endif #if MIN_VERSION_base(4,7,0) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (Array Int))) , TQC.testProperty "mapArray'" (QCCL.mapProp int16 int32 mapArray') #endif ] , testGroup "SmallArray" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (SmallArray Int))) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) #if MIN_VERSION_base(4,9,0) || MIN_VERSION_transformers(0,4,0) , lawsToTest (QCC.functorLaws (Proxy1 :: Proxy1 SmallArray)) , lawsToTest (QCC.applicativeLaws (Proxy1 :: Proxy1 SmallArray)) , lawsToTest (QCC.monadLaws (Proxy1 :: Proxy1 SmallArray)) , lawsToTest (QCC.foldableLaws (Proxy1 :: Proxy1 SmallArray)) , lawsToTest (QCC.traversableLaws (Proxy1 :: Proxy1 SmallArray)) #endif #if MIN_VERSION_base(4,7,0) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (SmallArray Int))) , TQC.testProperty "mapSmallArray'" (QCCL.mapProp int16 int32 mapSmallArray') #endif ] , testGroup "ByteArray" [ testGroup "Ordering" [ TQC.testProperty "equality" byteArrayEqProp , TQC.testProperty "compare" byteArrayCompareProp ] , testGroup "Resize" [ TQC.testProperty "shrink" byteArrayShrinkProp , TQC.testProperty "grow" byteArrayGrowProp ] , lawsToTest (QCC.eqLaws (Proxy :: Proxy ByteArray)) , lawsToTest (QCC.ordLaws (Proxy :: Proxy ByteArray)) , lawsToTest (QCC.showReadLaws (Proxy :: Proxy (Array Int))) #if MIN_VERSION_base(4,7,0) , lawsToTest (QCC.isListLaws (Proxy :: Proxy ByteArray)) #endif ] , testGroup "PrimArray" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (PrimArray Word16))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (PrimArray Word16))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (PrimArray Word16))) #if MIN_VERSION_base(4,7,0) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (PrimArray Word16))) , TQC.testProperty "foldrPrimArray" (QCCL.foldrProp int16 foldrPrimArray) , TQC.testProperty "foldrPrimArray'" (QCCL.foldrProp int16 foldrPrimArray') , TQC.testProperty "foldlPrimArray" (QCCL.foldlProp int16 foldlPrimArray) , TQC.testProperty "foldlPrimArray'" (QCCL.foldlProp int16 foldlPrimArray') , TQC.testProperty "foldlPrimArrayM'" (QCCL.foldlMProp int16 foldlPrimArrayM') , TQC.testProperty "mapPrimArray" (QCCL.mapProp int16 int32 mapPrimArray) , TQC.testProperty "traversePrimArray" (QCCL.traverseProp int16 int32 traversePrimArray) , TQC.testProperty "traversePrimArrayP" (QCCL.traverseProp int16 int32 traversePrimArrayP) , TQC.testProperty "imapPrimArray" (QCCL.imapProp int16 int32 imapPrimArray) , TQC.testProperty "itraversePrimArray" (QCCL.imapMProp int16 int32 itraversePrimArray) , TQC.testProperty "itraversePrimArrayP" (QCCL.imapMProp int16 int32 itraversePrimArrayP) , TQC.testProperty "generatePrimArray" (QCCL.generateProp int16 generatePrimArray) , TQC.testProperty "generatePrimArrayA" (QCCL.generateMProp int16 generatePrimArrayA) , TQC.testProperty "generatePrimArrayP" (QCCL.generateMProp int16 generatePrimArrayP) , TQC.testProperty "replicatePrimArray" (QCCL.replicateProp int16 replicatePrimArray) , TQC.testProperty "replicatePrimArrayA" (QCCL.replicateMProp int16 replicatePrimArrayA) , TQC.testProperty "replicatePrimArrayP" (QCCL.replicateMProp int16 replicatePrimArrayP) , TQC.testProperty "filterPrimArray" (QCCL.filterProp int16 filterPrimArray) , TQC.testProperty "filterPrimArrayA" (QCCL.filterMProp int16 filterPrimArrayA) , TQC.testProperty "filterPrimArrayP" (QCCL.filterMProp int16 filterPrimArrayP) , TQC.testProperty "mapMaybePrimArray" (QCCL.mapMaybeProp int16 int32 mapMaybePrimArray) , TQC.testProperty "mapMaybePrimArrayA" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayA) , TQC.testProperty "mapMaybePrimArrayP" (QCCL.mapMaybeMProp int16 int32 mapMaybePrimArrayP) #endif ] , testGroup "UnliftedArray" [ lawsToTest (QCC.eqLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16)))) , lawsToTest (QCC.ordLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16)))) , lawsToTest (QCC.monoidLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16)))) #if MIN_VERSION_base(4,7,0) , lawsToTest (QCC.isListLaws (Proxy :: Proxy (UnliftedArray (PrimArray Int16)))) , TQC.testProperty "mapUnliftedArray" (QCCL.mapProp arrInt16 arrInt32 mapUnliftedArray) , TQC.testProperty "foldrUnliftedArray" (QCCL.foldrProp arrInt16 foldrUnliftedArray) , TQC.testProperty "foldrUnliftedArray'" (QCCL.foldrProp arrInt16 foldrUnliftedArray') , TQC.testProperty "foldlUnliftedArray" (QCCL.foldlProp arrInt16 foldlUnliftedArray) , TQC.testProperty "foldlUnliftedArray'" (QCCL.foldlProp arrInt16 foldlUnliftedArray') #endif ] , testGroup "DefaultSetMethod" [ lawsToTest (QCC.primLaws (Proxy :: Proxy DefaultSetMethod)) ] -- , testGroup "PrimStorable" -- [ lawsToTest (QCC.storableLaws (Proxy :: Proxy Derived)) -- ] ] int16 :: Proxy Int16 int16 = Proxy int32 :: Proxy Int32 int32 = Proxy arrInt16 :: Proxy (PrimArray Int16) arrInt16 = Proxy arrInt32 :: Proxy (PrimArray Int16) arrInt32 = Proxy -- Tests that using resizeByteArray to shrink a byte array produces -- the same results as calling Data.List.take on the list that the -- byte array corresponds to. byteArrayShrinkProp :: QC.Property byteArrayShrinkProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) -> let large = max n m small = min n m xs = intsLessThan large ys = byteArrayFromList xs largeBytes = large * sizeOf (undefined :: Int) smallBytes = small * sizeOf (undefined :: Int) expected = byteArrayFromList (L.take small xs) actual = runST $ do mzs0 <- newByteArray largeBytes copyByteArray mzs0 0 ys 0 largeBytes mzs1 <- resizeMutableByteArray mzs0 smallBytes unsafeFreezeByteArray mzs1 in expected === actual -- Tests that using resizeByteArray with copyByteArray (to fill in the -- new empty space) to grow a byte array produces the same results as -- calling Data.List.++ on the lists corresponding to the original -- byte array and the appended byte array. byteArrayGrowProp :: QC.Property byteArrayGrowProp = QC.property $ \(QC.NonNegative (n :: Int)) (QC.NonNegative (m :: Int)) -> let large = max n m small = min n m xs1 = intsLessThan small xs2 = intsLessThan (large - small) ys1 = byteArrayFromList xs1 ys2 = byteArrayFromList xs2 largeBytes = large * sizeOf (undefined :: Int) smallBytes = small * sizeOf (undefined :: Int) expected = byteArrayFromList (xs1 ++ xs2) actual = runST $ do mzs0 <- newByteArray smallBytes copyByteArray mzs0 0 ys1 0 smallBytes mzs1 <- resizeMutableByteArray mzs0 largeBytes copyByteArray mzs1 smallBytes ys2 0 ((large - small) * sizeOf (undefined :: Int)) unsafeFreezeByteArray mzs1 in expected === actual -- Provide the non-negative integers up to the bound. For example: -- -- >>> intsLessThan 5 -- [0,1,2,3,4] intsLessThan :: Int -> [Int] intsLessThan i = if i < 1 then [] else (i - 1) : intsLessThan (i - 1) byteArrayCompareProp :: QC.Property byteArrayCompareProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) -> compareLengthFirst xs ys === compare (byteArrayFromList xs) (byteArrayFromList ys) byteArrayEqProp :: QC.Property byteArrayEqProp = QC.property $ \(xs :: [Word8]) (ys :: [Word8]) -> (compareLengthFirst xs ys == EQ) === (byteArrayFromList xs == byteArrayFromList ys) compareLengthFirst :: [Word8] -> [Word8] -> Ordering compareLengthFirst xs ys = (compare `on` length) xs ys <> compare xs ys -- on GHC 7.4, Proxy is not polykinded, so we need this instead. data Proxy1 (f :: * -> *) = Proxy1 lawsToTest :: QCC.Laws -> TestTree lawsToTest (QCC.Laws name pairs) = testGroup name (map (uncurry TQC.testProperty) pairs) testArray :: IO () testArray = do arr <- newArray 1 'A' let unit = case writeArray arr 0 'B' of IO f -> case f realWorld# of (# _, _ #) -> () c1 <- readArray arr 0 return $! unit c2 <- readArray arr 0 if c1 == 'A' && c2 == 'B' then return () else error $ "Expected AB, got: " ++ show (c1, c2) testByteArray :: IO () testByteArray = do let arr1 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8]) arr2 = mkByteArray ([0xde, 0xad, 0xbe, 0xef] :: [Word8]) arr3 = mkByteArray ([0xde, 0xad, 0xbe, 0xee] :: [Word8]) arr4 = mkByteArray ([0xde, 0xad, 0xbe, 0xdd] :: [Word8]) arr5 = mkByteArray ([0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xdd] :: [Word8]) when (show arr1 /= "[0xde, 0xad, 0xbe, 0xef]") $ fail $ "ByteArray Show incorrect: "++show arr1 unless (arr1 > arr3) $ fail $ "ByteArray Ord incorrect" unless (arr1 == arr2) $ fail $ "ByteArray Eq incorrect" unless (mappend arr1 arr4 == arr5) $ fail $ "ByteArray Monoid mappend incorrect" unless (mappend arr1 (mappend arr3 arr4) == mappend (mappend arr1 arr3) arr4) $ fail $ "ByteArray Monoid mappend not associative" unless (mconcat [arr1,arr2,arr3,arr4,arr5] == (arr1 <> arr2 <> arr3 <> arr4 <> arr5)) $ fail $ "ByteArray Monoid mconcat incorrect" #if MIN_VERSION_base(4,9,0) unless (stimes (3 :: Int) arr4 == (arr4 <> arr4 <> arr4)) $ fail $ "ByteArray Semigroup stimes incorrect" #endif mkByteArray :: Prim a => [a] -> ByteArray mkByteArray xs = runST $ do marr <- newByteArray (length xs * sizeOf (head xs)) sequence $ zipWith (writeByteArray marr) [0..] xs unsafeFreezeByteArray marr instance Arbitrary1 Array where liftArbitrary elemGen = fmap fromList (QC.liftArbitrary elemGen) instance Arbitrary a => Arbitrary (Array a) where arbitrary = fmap fromList QC.arbitrary instance Arbitrary1 SmallArray where liftArbitrary elemGen = fmap smallArrayFromList (QC.liftArbitrary elemGen) instance Arbitrary a => Arbitrary (SmallArray a) where arbitrary = fmap smallArrayFromList QC.arbitrary instance Arbitrary ByteArray where arbitrary = do xs <- QC.arbitrary :: Gen [Word8] return $ runST $ do a <- newByteArray (L.length xs) iforM_ xs $ \ix x -> do writeByteArray a ix x unsafeFreezeByteArray a instance (Arbitrary a, Prim a) => Arbitrary (PrimArray a) where arbitrary = do xs <- QC.arbitrary :: Gen [a] return $ runST $ do a <- newPrimArray (L.length xs) iforM_ xs $ \ix x -> do writePrimArray a ix x unsafeFreezePrimArray a instance (Arbitrary a, PrimUnlifted a) => Arbitrary (UnliftedArray a) where arbitrary = do xs <- QC.vector =<< QC.choose (0,3) return (unliftedArrayFromList xs) instance (Prim a, CoArbitrary a) => CoArbitrary (PrimArray a) where coarbitrary x = QC.coarbitrary (primArrayToList x) instance (Prim a, Function a) => Function (PrimArray a) where function = QC.functionMap primArrayToList primArrayFromList iforM_ :: Monad m => [a] -> (Int -> a -> m b) -> m () iforM_ xs0 f = go 0 xs0 where go !_ [] = return () go !ix (x : xs) = f ix x >> go (ix + 1) xs newtype DefaultSetMethod = DefaultSetMethod Int16 deriving (Eq,Show,Arbitrary) instance Prim DefaultSetMethod where sizeOf# _ = sizeOf# (undefined :: Int16) alignment# _ = alignment# (undefined :: Int16) indexByteArray# arr ix = DefaultSetMethod (indexByteArray# arr ix) readByteArray# arr ix s0 = case readByteArray# arr ix s0 of (# s1, n #) -> (# s1, DefaultSetMethod n #) writeByteArray# arr ix (DefaultSetMethod n) s0 = writeByteArray# arr ix n s0 setByteArray# = defaultSetByteArray# indexOffAddr# addr off = DefaultSetMethod (indexOffAddr# addr off) readOffAddr# addr off s0 = case readOffAddr# addr off s0 of (# s1, n #) -> (# s1, DefaultSetMethod n #) writeOffAddr# addr off (DefaultSetMethod n) s0 = writeOffAddr# addr off n s0 setOffAddr# = defaultSetOffAddr# -- TODO: Uncomment this out when GHC 8.6 is release. Also, uncomment -- the corresponding PrimStorable test group above. -- -- newtype Derived = Derived Int16 -- deriving newtype (Prim) -- deriving Storable via (PrimStorable Derived)