Copyright | (c) A. V. H. McPhail 2010 |
---|---|
License | BSD3 |
Maintainer | haskell.vivian.mcphail <at> gmail <dot> com |
Stability | provisional |
Portability | portable |
Safe Haskell | None |
Language | Haskell98 |
Graphical plots
Re-exported for convenience
Example
Create some data:
ln = 25 ts = linspace ln (0,1) rs = randomVector 0 Gaussian ln ss = sin (15*2*pi*ts) ds = 0.25*rs + ss es = constant (0.25*(stddev rs)) ln fs :: Double -> Double fs = sin . (15*2*pi*)
Perform actions in 'Figure a' to create a figure
test_graph = do withTextDefaults $ setFontFamily "OpenSymbol" withTitle $ setText "Testing plot package:" withSubTitle $ do setText "with 1 second of a 15Hz sine wave" setFontSize 10 setPlots 1 1 withPlot (1,1) $ do setDataset (ts,[point (ds,es) (Cross,red),line fs blue]) addAxis XAxis (Side Lower) $ withAxisLabel $ setText "time (s)" addAxis YAxis (Side Lower) $ withAxisLabel $ setText "amplitude" addAxis XAxis (Value 0) $ return () setRangeFromData XAxis Lower Linear setRange YAxis Lower Linear (-1.25) 1.25
Render the graph to a Cairo 'Render ()' action that takes the width and height of the drawing area
test_render :: (Double,Double) -> Render () test_render = render test_graph
The same graph using the Simple
interface
test_graph2 = do plot (ts,[point (ds,es) (Cross,red),line fs blue]) title "Testing plot package:" subtitle "with 1 second of a 15Hz sine wave" xlabel "time (s)" ylabel "amplitude" yrange Linear (-1.25) 1.25
The 'Render a' action can be used in GTK or with Cairo to write to file in PS, PDF, SVG, or PNG
Display a greyscale matrix
ms :: Matrix Double ms = buildMatrix 64 64 (\(x,y) -> sin (2*2*pi*(fromIntegral x)/64) * cos (5*2*pi*(fromIntegral y)/64))
mat_fig = do setPlots 1 1 withPlot (1,1) $ do setDataset ms addAxis XAxis (Side Lower) $ setTickLabelFormat "%.0f" addAxis YAxis (Side Lower) $ setTickLabelFormat "%.0f" setRangeFromData XAxis Lower Linear setRangeFromData YAxis Lower Linear
The ODE example from hmatrix:
import Numeric.GSL import Numeric.LinearAlgebra
xdot t [x,v] = [v, -0.95*x - 0.1*v] ts = linspace 100 (0,20) sol = odeSolve xdot [10,0] ts
ode_fig = plot (Line,ts,[sol])