{-# LANGUAGE CPP                   #-}
{-# LANGUAGE RankNTypes            #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances  #-}
{-# LANGUAGE Trustworthy           #-}

{-| This module is the recommended entry point to the @pipes@ library.

    Read "Pipes.Tutorial" if you want a tutorial explaining how to use this
    library.
-}

module Pipes (
    -- * The Proxy Monad Transformer
      Proxy
    , X
    , Effect
    , Effect'
    , runEffect

    -- ** Producers
    -- $producers
    , Producer
    , Producer'
    , yield
    , for
    , (~>)
    , (<~)

    -- ** Consumers
    -- $consumers
    , Consumer
    , Consumer'
    , await
    , (>~)
    , (~<)

    -- ** Pipes
    -- $pipes
    , Pipe
    , cat
    , (>->)
    , (<-<)

    -- * ListT
    , ListT(..)
    , runListT
    , Enumerable(..)

    -- * Utilities
    , next
    , each
    , every
    , discard

    -- * Re-exports
    -- $reexports
    , module Control.Monad
    , module Control.Monad.IO.Class
    , module Control.Monad.Trans.Class
    , module Control.Monad.Morph
    , Foldable
    ) where

import Control.Monad (void)
import Control.Monad.Catch (MonadThrow(..), MonadCatch(..), MonadMask(..))
import Control.Monad.Except (MonadError(..))
import Control.Monad.IO.Class (MonadIO(liftIO))
import Control.Monad (MonadPlus(mzero, mplus))
import Control.Monad.Reader (MonadReader(..))
import Control.Monad.State (MonadState(..))
import Control.Monad.Trans.Class (MonadTrans(lift))
import Control.Monad.Trans.Except (ExceptT, runExceptT)
import Control.Monad.Trans.Identity (IdentityT(runIdentityT))
import Control.Monad.Trans.Maybe (MaybeT(runMaybeT))
import Control.Monad.Writer (MonadWriter(..))
import Control.Monad.Zip (MonadZip(..))
import Pipes.Core
import Pipes.Internal (Proxy(..))
import qualified Data.Foldable as F

#if MIN_VERSION_base(4,8,0)
import Control.Applicative (Alternative(..))
#else
import Control.Applicative
import Data.Foldable (Foldable)
import Data.Traversable (Traversable(..))
import Data.Monoid
#endif

import qualified Control.Monad.Catch

-- Re-exports
import Control.Monad.Morph (MFunctor(hoist), MMonad(embed))

infixl 4 <~
infixr 4 ~>
infixl 5 ~<
infixr 5 >~
infixl 7 >->
infixr 7 <-<

{- $producers
    Use 'yield' to produce output and ('~>') \/ 'for' to substitute 'yield's.

    'yield' and ('~>') obey the 'Control.Category.Category' laws:

@
\-\- Substituting \'yield\' with \'f\' gives \'f\'
'yield' '~>' f = f

\-\- Substituting every \'yield\' with another \'yield\' does nothing
f '~>' 'yield' = f

\-\- \'yield\' substitution is associative
(f '~>' g) '~>' h = f '~>' (g '~>' h)
@

    These are equivalent to the following \"for loop laws\":

@
\-\- Looping over a single yield simplifies to function application
'for' ('yield' x) f = f x

\-\- Re-yielding every element of a stream returns the original stream
'for' s 'yield' = s

\-\- Nested for loops can become a sequential 'for' loops if the inner loop
\-\- body ignores the outer loop variable
'for' s (\\a -\> 'for' (f a) g) = 'for' ('for' s f) g = 'for' s (f '~>' g)
@

-}

{-| Produce a value

@
'yield' :: 'Monad' m => a -> 'Pipe' x a m ()
@
-}
yield :: Monad m => a -> Producer' a m ()
yield = respond
{-# INLINABLE [1] yield #-}

{-| @(for p body)@ loops over @p@ replacing each 'yield' with @body@.

@
'for' :: 'Monad' m => 'Producer' b m r -> (b -> 'Effect'       m ()) -> 'Effect'       m r
'for' :: 'Monad' m => 'Producer' b m r -> (b -> 'Producer'   c m ()) -> 'Producer'   c m r
'for' :: 'Monad' m => 'Pipe'   x b m r -> (b -> 'Consumer' x   m ()) -> 'Consumer' x   m r
'for' :: 'Monad' m => 'Pipe'   x b m r -> (b -> 'Pipe'     x c m ()) -> 'Pipe'     x c m r
@

    The following diagrams show the flow of information:

@
                              .--->   b
                             /        |
   +-----------+            /   +-----|-----+                 +---------------+
   |           |           /    |     v     |                 |               |
   |           |          /     |           |                 |               |
x ==>    p    ==> b   ---'   x ==>   body  ==> c     =     x ==> 'for' p body  ==> c
   |           |                |           |                 |               |
   |     |     |                |     |     |                 |       |       |
   +-----|-----+                +-----|-----+                 +-------|-------+
         v                            v                               v
         r                            ()                              r
@

    For a more complete diagram including bidirectional flow, see "Pipes.Core#respond-diagram".
-}
for :: Monad m
    =>       Proxy x' x b' b m a'
    -- ^
    -> (b -> Proxy x' x c' c m b')
    -- ^
    ->       Proxy x' x c' c m a'
for = (//>)
-- There are a number of useful rewrites which can be performed on various uses
-- of this combinator; to ensure that they fire we defer inlining until quite
-- late.
{-# INLINABLE [0] for #-}

{-# RULES
    "for (for p f) g" forall p f g . for (for p f) g = for p (\a -> for (f a) g)

  ; "for p yield" forall p . for p yield = p

  ; "for (yield x) f" forall x f . for (yield x) f = f x

  ; "for cat f" forall f .
        for cat f =
            let go = do
                    x <- await
                    f x
                    go
            in  go

  ; "f >~ (g >~ p)" forall f g p . f >~ (g >~ p) = (f >~ g) >~ p

  ; "await >~ p" forall p . await >~ p = p

  ; "p >~ await" forall p . p >~ await = p

  ; "m >~ cat" forall m .
        m >~ cat =
            let go = do
                    x <- m
                    yield x
                    go
            in  go

  ; "p1 >-> (p2 >-> p3)" forall p1 p2 p3 .
        p1 >-> (p2 >-> p3) = (p1 >-> p2) >-> p3

  ; "p >-> cat" forall p . p >-> cat = p

  ; "cat >-> p" forall p . cat >-> p = p

  #-}

{-| Compose loop bodies

@
('~>') :: 'Monad' m => (a -> 'Producer' b m r) -> (b -> 'Effect'       m ()) -> (a -> 'Effect'       m r)
('~>') :: 'Monad' m => (a -> 'Producer' b m r) -> (b -> 'Producer'   c m ()) -> (a -> 'Producer'   c m r)
('~>') :: 'Monad' m => (a -> 'Pipe'   x b m r) -> (b -> 'Consumer' x   m ()) -> (a -> 'Consumer' x   m r)
('~>') :: 'Monad' m => (a -> 'Pipe'   x b m r) -> (b -> 'Pipe'     x c m ()) -> (a -> 'Pipe'     x c m r)
@

    The following diagrams show the flow of information:

@
         a                    .--->   b                              a
         |                   /        |                              |
   +-----|-----+            /   +-----|-----+                 +------|------+
   |     v     |           /    |     v     |                 |      v      |
   |           |          /     |           |                 |             |
x ==>    f    ==> b   ---'   x ==>    g    ==> c     =     x ==>   f '~>' g  ==> c
   |           |                |           |                 |             |
   |     |     |                |     |     |                 |      |      |
   +-----|-----+                +-----|-----+                 +------|------+
         v                            v                              v
         r                            ()                             r
@

    For a more complete diagram including bidirectional flow, see "Pipes.Core#respond-diagram".
-}
(~>)
    :: Monad m
    => (a -> Proxy x' x b' b m a')
    -- ^
    -> (b -> Proxy x' x c' c m b')
    -- ^
    -> (a -> Proxy x' x c' c m a')
(~>) = (/>/)
{-# INLINABLE (~>) #-}

-- | ('~>') with the arguments flipped
(<~)
    :: Monad m
    => (b -> Proxy x' x c' c m b')
    -- ^
    -> (a -> Proxy x' x b' b m a')
    -- ^
    -> (a -> Proxy x' x c' c m a')
g <~ f = f ~> g
{-# INLINABLE (<~) #-}

{- $consumers
    Use 'await' to request input and ('>~') to substitute 'await's.

    'await' and ('>~') obey the 'Control.Category.Category' laws:

@
\-\- Substituting every \'await\' with another \'await\' does nothing
'await' '>~' f = f

\-\- Substituting \'await\' with \'f\' gives \'f\'
f '>~' 'await' = f

\-\- \'await\' substitution is associative
(f '>~' g) '>~' h = f '>~' (g '>~' h)
@

-}

{-| Consume a value

@
'await' :: 'Monad' m => 'Pipe' a y m a
@
-}
await :: Monad m => Consumer' a m a
await = request ()
{-# INLINABLE [1] await #-}

{-| @(draw >~ p)@ loops over @p@ replacing each 'await' with @draw@

@
('>~') :: 'Monad' m => 'Effect'       m b -> 'Consumer' b   m c -> 'Effect'       m c
('>~') :: 'Monad' m => 'Consumer' a   m b -> 'Consumer' b   m c -> 'Consumer' a   m c
('>~') :: 'Monad' m => 'Producer'   y m b -> 'Pipe'     b y m c -> 'Producer'   y m c
('>~') :: 'Monad' m => 'Pipe'     a y m b -> 'Pipe'     b y m c -> 'Pipe'     a y m c
@

    The following diagrams show the flow of information:

@
   +-----------+                 +-----------+                 +-------------+
   |           |                 |           |                 |             |
   |           |                 |           |                 |             |
a ==>    f    ==> y   .--->   b ==>    g    ==> y     =     a ==>   f '>~' g  ==> y
   |           |     /           |           |                 |             |
   |     |     |    /            |     |     |                 |      |      |
   +-----|-----+   /             +-----|-----+                 +------|------+
         v        /                    v                              v
         b   ----'                     c                              c
@

    For a more complete diagram including bidirectional flow, see "Pipes.Core#request-diagram".
-}
(>~)
    :: Monad m
    => Proxy a' a y' y m b
    -- ^
    -> Proxy () b y' y m c
    -- ^
    -> Proxy a' a y' y m c
p1 >~ p2 = (\() -> p1) >\\ p2
{-# INLINABLE [1] (>~) #-}

-- | ('>~') with the arguments flipped
(~<)
    :: Monad m
    => Proxy () b y' y m c
    -- ^
    -> Proxy a' a y' y m b
    -- ^
    -> Proxy a' a y' y m c
p2 ~< p1 = p1 >~ p2
{-# INLINABLE (~<) #-}

{- $pipes
    Use 'await' and 'yield' to build 'Pipe's and ('>->') to connect 'Pipe's.

    'cat' and ('>->') obey the 'Control.Category.Category' laws:

@
\-\- Useless use of cat
'cat' '>->' f = f

\-\- Redirecting output to cat does nothing
f '>->' 'cat' = f

\-\- The pipe operator is associative
(f '>->' g) '>->' h = f '>->' (g '>->' h)
@

-}

-- | The identity 'Pipe', analogous to the Unix @cat@ program
cat :: Monad m => Pipe a a m r
cat = pull ()
{-# INLINABLE [1] cat #-}

{-| 'Pipe' composition, analogous to the Unix pipe operator

@
('>->') :: 'Monad' m => 'Producer' b m r -> 'Consumer' b   m r -> 'Effect'       m r
('>->') :: 'Monad' m => 'Producer' b m r -> 'Pipe'     b c m r -> 'Producer'   c m r
('>->') :: 'Monad' m => 'Pipe'   a b m r -> 'Consumer' b   m r -> 'Consumer' a   m r
('>->') :: 'Monad' m => 'Pipe'   a b m r -> 'Pipe'     b c m r -> 'Pipe'     a c m r
@

    The following diagrams show the flow of information:

@
   +-----------+     +-----------+                 +-------------+
   |           |     |           |                 |             |
   |           |     |           |                 |             |
a ==>    f    ==> b ==>    g    ==> c     =     a ==>  f '>->' g  ==> c
   |           |     |           |                 |             |
   |     |     |     |     |     |                 |      |      |
   +-----|-----+     +-----|-----+                 +------|------+
         v                 v                              v
         r                 r                              r
@

    For a more complete diagram including bidirectional flow, see "Pipes.Core#pull-diagram".
-}
(>->)
    :: Monad m
    => Proxy a' a () b m r
    -- ^
    -> Proxy () b c' c m r
    -- ^
    -> Proxy a' a c' c m r
p1 >-> p2 = (\() -> p1) +>> p2
{-# INLINABLE [1] (>->) #-}

{-| The list monad transformer, which extends a monad with non-determinism

    'return' corresponds to 'yield', yielding a single value

    ('>>=') corresponds to 'for', calling the second computation once for each
    time the first computation 'yield's.
-}
newtype ListT m a = Select { enumerate :: Producer a m () }

instance Monad m => Functor (ListT m) where
    fmap f p = Select (for (enumerate p) (\a -> yield (f a)))
    {-# INLINE fmap #-}

instance Monad m => Applicative (ListT m) where
    pure a = Select (yield a)
    {-# INLINE pure #-}
    mf <*> mx = Select (
        for (enumerate mf) (\f ->
        for (enumerate mx) (\x ->
        yield (f x) ) ) )

instance Monad m => Monad (ListT m) where
    return   = pure
    {-# INLINE return #-}
    m >>= f  = Select (for (enumerate m) (\a -> enumerate (f a)))
    {-# INLINE (>>=) #-}
    fail _   = mzero
    {-# INLINE fail #-}

instance Foldable m => Foldable (ListT m) where
    foldMap f = go . enumerate
      where
        go p = case p of
            Request v _  -> closed v
            Respond a fu -> f a `mappend` go (fu ())
            M       m    -> F.foldMap go m
            Pure    _    -> mempty
    {-# INLINE foldMap #-}

instance (Monad m, Traversable m) => Traversable (ListT m) where
    traverse k (Select p) = fmap Select (traverse_ p)
      where
        traverse_ (Request v _ ) = closed v
        traverse_ (Respond a fu) = _Respond <$> k a <*> traverse_ (fu ())
          where
            _Respond a_ a' = Respond a_ (\_ -> a')
        traverse_ (M       m   ) = fmap M (traverse traverse_ m)
        traverse_ (Pure     r  ) = pure (Pure r)

instance MonadTrans ListT where
    lift m = Select (do
        a <- lift m
        yield a )

instance (MonadIO m) => MonadIO (ListT m) where
    liftIO m = lift (liftIO m)
    {-# INLINE liftIO #-}

instance (Monad m) => Alternative (ListT m) where
    empty = Select (return ())
    {-# INLINE empty #-}
    p1 <|> p2 = Select (do
        enumerate p1
        enumerate p2 )

instance (Monad m) => MonadPlus (ListT m) where
    mzero = empty
    {-# INLINE mzero #-}
    mplus = (<|>)
    {-# INLINE mplus #-}

instance MFunctor ListT where
    hoist morph = Select . hoist morph . enumerate
    {-# INLINE hoist #-}

instance MMonad ListT where
    embed f m = Select (enumerate (embed f m))
    {-# INLINE embed #-}

instance (Monad m) => Monoid (ListT m a) where
    mempty = empty
    {-# INLINE mempty #-}
    mappend = (<|>)
    {-# INLINE mappend #-}

instance (MonadState s m) => MonadState s (ListT m) where
    get     = lift  get
    {-# INLINE get #-}

    put   s = lift (put   s)
    {-# INLINE put #-}

    state f = lift (state f)
    {-# INLINE state #-}

instance (MonadWriter w m) => MonadWriter w (ListT m) where
    writer = lift . writer
    {-# INLINE writer #-}

    tell w = lift (tell w)
    {-# INLINE tell #-}

    listen l = Select (go (enumerate l) mempty)
      where
        go p w = case p of
            Request a' fa  -> Request a' (\a  -> go (fa  a ) w)
            Respond b  fb' -> Respond (b, w)  (\b' -> go (fb' b') w)
            M          m   -> M (do
                (p', w') <- listen m
                return (go p' $! mappend w w') )
            Pure    r      -> Pure r

    pass l = Select (go (enumerate l) mempty)
      where
        go p w = case p of
            Request  a'     fa  -> Request a' (\a  -> go (fa  a ) w)
            Respond (b, f)  fb' -> M (pass (return
                (Respond b (\b' -> go (fb' b') (f w)), \_ -> f w) ))
            M               m   -> M (do
                (p', w') <- listen m
                return (go p' $! mappend w w') )
            Pure     r          -> Pure r

instance (MonadReader i m) => MonadReader i (ListT m) where
    ask = lift ask
    {-# INLINE ask #-}

    local f l = Select (local f (enumerate l))
    {-# INLINE local #-}

    reader f = lift (reader f)
    {-# INLINE reader #-}

instance (MonadError e m) => MonadError e (ListT m) where
    throwError e = lift (throwError e)
    {-# INLINE throwError #-}

    catchError l k = Select (catchError (enumerate l) (\e -> enumerate (k e)))
    {-# INLINE catchError #-}

instance MonadThrow m => MonadThrow (ListT m) where
    throwM = Select . throwM
    {-# INLINE throwM #-}

instance MonadCatch m => MonadCatch (ListT m) where
    catch l k = Select (Control.Monad.Catch.catch (enumerate l) (\e -> enumerate (k e)))
    {-# INLINE catch #-}

instance Monad m => MonadZip (ListT m) where
    mzipWith f = go
      where
        go xs ys = Select $ do
            xres <- lift $ next (enumerate xs)
            case xres of
                Left r -> return r
                Right (x, xnext) -> do
                    yres <- lift $ next (enumerate ys)
                    case yres of
                        Left r -> return r
                        Right (y, ynext) -> do
                            yield (f x y)
                            enumerate (go (Select xnext) (Select ynext))

-- | Run a self-contained `ListT` computation
runListT :: Monad m => ListT m a -> m ()
runListT l = runEffect (enumerate (l >> mzero))
{-# INLINABLE runListT #-}

{-| 'Enumerable' generalizes 'Data.Foldable.Foldable', converting effectful
    containers to 'ListT's.

    Instances of 'Enumerable' must satisfy these two laws:

> toListT (return r) = return r
>
> toListT $ do x <- m  =  do x <- toListT m
>              f x           toListT (f x)

    In other words, 'toListT' is monad morphism.
-}
class Enumerable t where
    toListT :: Monad m => t m a -> ListT m a

instance Enumerable ListT where
    toListT = id

instance Enumerable IdentityT where
    toListT m = Select $ do
        a <- lift $ runIdentityT m
        yield a

instance Enumerable MaybeT where
    toListT m = Select $ do
        x <- lift $ runMaybeT m
        case x of
            Nothing -> return ()
            Just a  -> yield a

instance Enumerable (ExceptT e) where
    toListT m = Select $ do
        x <- lift $ runExceptT m
        case x of
            Left  _ -> return ()
            Right a -> yield a

{-| Consume the first value from a 'Producer'

    'next' either fails with a 'Left' if the 'Producer' terminates or succeeds
    with a 'Right' providing the next value and the remainder of the 'Producer'.
-}
next :: Monad m => Producer a m r -> m (Either r (a, Producer a m r))
next = go
  where
    go p = case p of
        Request v _  -> closed v
        Respond a fu -> return (Right (a, fu ()))
        M         m  -> m >>= go
        Pure    r    -> return (Left r)
{-# INLINABLE next #-}

-- | Convert a 'F.Foldable' to a 'Producer'
each :: (Monad m, Foldable f) => f a -> Producer' a m ()
each = F.foldr (\a p -> yield a >> p) (return ())
{-# INLINABLE each #-}
{-  The above code is the same as:

> each = Data.Foldable.mapM_ yield

    ... except writing it directly in terms of `Data.Foldable.foldr` improves
    build/foldr fusion
-}

-- | Convert an 'Enumerable' to a 'Producer'
every :: (Monad m, Enumerable t) => t m a -> Producer' a m ()
every it = discard >\\ enumerate (toListT it)
{-# INLINABLE every #-}

-- | Discards a value
discard :: Monad m => a -> m ()
discard _ = return ()
{-# INLINABLE discard #-}

-- | ('>->') with the arguments flipped
(<-<)
    :: Monad m
    => Proxy () b c' c m r
    -- ^
    -> Proxy a' a () b m r
    -- ^
    -> Proxy a' a c' c m r
p2 <-< p1 = p1 >-> p2
{-# INLINABLE (<-<) #-}

{- $reexports
    "Control.Monad" re-exports 'void'

    "Control.Monad.IO.Class" re-exports 'MonadIO'.

    "Control.Monad.Trans.Class" re-exports 'MonadTrans'.

    "Control.Monad.Morph" re-exports 'MFunctor'.

    "Data.Foldable" re-exports 'Foldable' (the class name only).
-}