module Codec.Phaser.Core (
Automaton,
Phase,
Link(..),
get,
put,
put1,
count,
yield,
eof,
(<??>),
(<?>),
(>#>),
starve,
toAutomaton,
fromAutomaton,
beforeStep,
step,
extract,
toReadS,
run,
parse_,
parse1_,
options,
readCount,
outputs
) where
import Control.Applicative
import Control.Monad
data Automaton p i o a =
Result a |
Ready (i -> Automaton p i o a) ([String] -> [String]) |
Failed ([String] -> [String]) |
Automaton p i o a :+++ Automaton p i o a |
Yield o (Automaton p i o a) |
Count (p -> p) (Automaton p i o a)
newtype Phase p i o a =
Phase (([String] -> [String]) ->
forall b . (a -> Automaton p i o b) -> Automaton p i o b)
infixr 4 >>#
class Link s d l | s d -> l where
(>>#) :: s p b c x -> d p c t a -> l p b t a
instance Functor (Phase p i o) where
fmap f (Phase x) = Phase (\e c -> x e (c . f))
instance Applicative (Phase p i o) where
pure a = Phase (\e c -> c a)
Phase f <*> Phase a = Phase (\e c -> f e (\f' -> a e (c . f')))
Phase a <* Phase b = Phase (\e c -> a e (\a' -> b e (\_ -> c a')))
(*>) = (>>)
instance Monad (Phase p i o) where
return = pure
fail s = Phase (\e _ -> Failed (e . (s:)))
Phase a >>= f = Phase (\e c -> a e (\a' -> let Phase b = f a' in b e c))
Phase a >> Phase b = Phase (\e c -> a e (const (b e c)))
instance Alternative (Phase p i o) where
empty = Phase (\e _ -> Failed e)
Phase a <|> Phase b = Phase (\e c -> prune1 (a e c :+++ b id c))
many a = some a <|> pure []
some (Phase a) = Phase (\e c -> let
go acc = a e (\x -> let acc' = acc . (x:) in prune1 (go acc' :+++ c (acc' [])))
in go id
)
instance MonadPlus (Phase p i o) where
mzero = empty
mplus = (<|>)
instance Functor (Automaton p i o) where
fmap f = go where
go (Result a) = Result (f a)
go (Ready n e) = Ready (fmap go n) e
go (Failed e) = Failed e
go (a :+++ b) = go a :+++ go b
go (Yield o r) = Yield o (go r)
go (Count p r) = Count p (go r)
instance Link Phase Automaton Phase where
(>>#) = link_p_a
link_p_a :: Phase p i t z -> Automaton p t o a -> Phase p i o a
link_p_a s d = fromAutomaton (toAutomaton s >># d)
instance Link Phase Phase Phase where
(>>#) = link_p_p
link_p_p :: Phase p i t z -> Phase p t o a -> Phase p i o a
link_p_p s d = s >># toAutomaton d
instance Link Automaton Automaton Automaton where
(>>#) = (!!!) where
Yield o r !!! d = case beforeStep d of
Left e -> e
Right d' -> r !!! step d' o
Failed e !!! _ = Failed e
_ !!! Failed e = Failed e
Result _ !!! d = starve d
(a :+++ b) !!! d = prune1 ((a !!! d) :+++ (b !!! d))
Count p r !!! d = prune1 (Count p (r !!! d))
s !!! Count p r = prune1 (Count p (s !!! r))
s !!! Yield o r = Yield o (s !!! r)
Ready n e !!! d = Ready (\t -> n t !!! d) e
infixr 1 <??>
(<??>) :: ([String] -> [String]) -> Phase p i o a -> Phase p i o a
f <??> Phase s = Phase (\e -> s (f . e))
infixr 1 <?>
e <?> Phase s = Phase (\e1 -> s ((e :) . e1))
infixr 1 >#>
(>#>) :: ((p0 -> p0) -> p -> p) -> Phase p0 i o a -> Phase p i o a
f >#> p = fromAutomaton $ go $ toAutomaton p where
go (Result a) = Result a
go (Ready n e) = Ready (fmap go n) e
go (Failed e) = Failed e
go (a :+++ b) = go a :+++ go b
go (Yield t r) = Yield t (go r)
go (Count p r) = Count (f p) (go r)
get :: Phase p i o i
get = Phase (flip Ready)
count :: (p -> p) -> Phase p i o ()
count f = Phase (\_ c -> Count f (c ()))
yield :: o -> Phase p i o ()
yield o = Phase (\_ c -> Yield o (c ()))
eof :: Phase p i o ()
eof = Phase (\e c -> prune1 (Failed e :+++ starve (c ())))
put1 :: i -> Phase p i o ()
put1 i = Phase (\_ c -> case beforeStep (c ()) of
Right n -> step n i
Left e -> e
)
put :: [i] -> Phase p i o ()
put i = Phase (\_ c -> run (c ()) i)
prune1 (Failed e1 :+++ Failed e2) = Failed (e1 . e2)
prune1 (Failed e1 :+++ Ready n e2) = Ready n (e1 . e2)
prune1 (Ready n e1 :+++ Failed e2) = Ready n (e1 . e2)
prune1 (Ready n1 e1 :+++ Ready n2 e2) =
Ready (\i -> prune1 $ n1 i :+++ n2 i) (e1 . e2)
prune1 (r@(Result _) :+++ Failed _) = r
prune1 (Failed _ :+++ r@(Result _)) = r
prune1 (f@(Failed _) :+++ (a :+++ b)) = prune1 (prune1 (f :+++ a) :+++ b)
prune1 ((a :+++ b) :+++ f@(Failed _)) = prune1 (a :+++ prune1 (b :+++ f))
prune1 (f@(Failed _) :+++ Yield o r) = prune1 (Yield o (prune1 (f :+++ r)))
prune1 (Yield o r :+++ f@(Failed _)) = prune1 (Yield o (prune1 (r :+++ f)))
prune1 (Count p (Count q r)) = prune1 $ Count (\w -> let
w' = p w
in w' `seq` q w') r
prune1 (Count p (Yield o r)) =
prune1 (Yield o (prune1 (Count p r)))
prune1 (Yield _ f@(Failed _)) = f
prune1 (Yield _ f@(Count _ (Failed _))) = f
prune1 a = a
starve :: Automaton p i o a -> Automaton p z o a
starve (Result a) = Result a
starve (Ready _ e) = Failed e
starve (Failed e) = Failed e
starve (a :+++ b) = prune1 (starve a :+++ starve b)
starve (Yield o r) = prune1 (Yield o (starve r))
starve (Count p r) = prune1 (Count p (starve r))
toAutomaton :: Phase p i o a -> Automaton p i o a
toAutomaton (Phase c) = c id Result
fromAutomaton :: Automaton p i o a -> Phase p i o a
fromAutomaton a = Phase (\e' c -> let
continue (Result r) = c r
continue (Ready n e) = Ready (fmap continue n) (e' . e)
continue (Failed e) = Failed (e' . e)
continue (l :+++ r) = prune1 (continue l :+++ continue r)
continue (Count p r) = prune1 (Count p (continue r))
continue (Yield o r) = prune1 (Yield o (continue r))
in continue a
)
beforeStep :: Automaton p i o a ->
Either (Automaton p v o a) (Automaton p i o a)
beforeStep = go where
go :: Automaton p i o a ->
Either (Automaton p v o a) (Automaton p i o a)
go (Result _) = Left (Failed id)
go r@(Ready _ _) = Right r
go (Failed f) = Left $ Failed f
go (a :+++ b) = case (go a, go b) of
(Right a', Right b') -> Right $ prune1 $ a' :+++ b'
(a'@(Right _), Left _) -> a'
(Left _, b'@(Right _)) -> b'
(Left a', Left b') -> Left $ prune1 $ a' :+++ b'
go (Yield o r) = case go r of
r'@(Left _) -> r'
Right r' -> Right (prune1 $ Yield o r')
go (Count p r) = case go r of
Left r' -> Left $ prune1 $ Count p r'
Right r' -> Right $ prune1 $ Count p r'
step :: Automaton p i o a -> i -> Automaton p i o a
step a' i = go a' where
go (Result _) = Failed id
go (Ready n _) = n i
go (Failed e) = Failed e
go (a :+++ b) = prune1 (go a :+++ go b)
go (Yield o r) = prune1 (Yield o (go r))
go (Count p r) = prune1 (Count p (go r))
extract :: p -> Automaton p i o a -> Either [(p,[String])] [a]
extract p' a = case go p' a of
Left e -> Left $ map (\(p,e') -> (p, e' [])) (e [])
Right r -> Right $ r []
where
go _ (Result z) = Right (z:)
go p (Ready _ e) = Left ((p,e):)
go p (Failed e) = Left ((p,e):)
go p (a :+++ b) = case (go p a, go p b) of
(Right a', Right b') -> Right (a' . b')
(a'@(Right _), Left _) -> a'
(Left _, b'@(Right _)) -> b'
(Left a', Left b') -> Left (a' . b')
go p (Yield _ r) = go p r
go p (Count i r) = let
p' = i p
in p' `seq` go p' r
toReadS :: Automaton p i o a -> [i] -> [(a,[i])]
toReadS a i = go a i [] where
go (Result r) i' = ((r,i'):)
go (Ready _ _) [] = id
go (Ready n _) (t:r) = go (n t) r
go (Failed _) _ = id
go (a :+++ b) i' = go a i' . go b i'
go (Yield _ r) i' = go r i'
go (Count _ r) i' = go r i'
run :: Automaton p i o a -> [i] -> Automaton p i o a
run = go where
go a [] = a
go a (i:r) = case beforeStep a of
Left a' -> a'
Right a' -> go (step a' i) r
parse_ :: p -> Phase p i o a -> [i] -> Either [(p,[String])] [a]
parse_ p a i = extract p $ run (toAutomaton a) i
parse1_ :: p -> Phase p i o a -> i -> Either [(p,[String])] [a]
parse1_ p a i = extract p $ step (toAutomaton a) i
options :: Automaton p i o a -> [Automaton p i o a]
options = ($ []) . go where
go (a :+++ b) = go a . go b
go (Yield o r) = (fmap . fmap) (Yield o) $ go r
go (Count p r) = (fmap . fmap) (Count p) $ go r
go a = (a :)
readCount :: Automaton p i o a -> (p -> p, Automaton p i o a)
readCount = go where
go (Count p0 r) = let
(p1, r') = go r
p' c = let
c' = p0 c
in c' `seq` p1 c'
in (p', r')
go (Yield o r) = let
(p, r') = go r
in (p, prune1 $ Yield o r')
go a = (id, a)
outputs :: Automaton p i o a -> ([o], Automaton p i o a)
outputs = go where
go (Yield o r) = let
(o', r') = go r
in (o:o', r')
go (Count p r) = let
(o, r') = go r
in (o, prune1 $ Count p r')
go a = ([], a)