{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE ScopedTypeVariables #-} ----------------------------------------------------------------------------- -- | -- Module : Text.Parser.Expression -- Copyright : (c) Edward Kmett 2011-2012 -- (c) Paolo Martini 2007 -- (c) Daan Leijen 1999-2001, -- License : BSD-style (see the LICENSE file) -- -- Maintainer : ekmett@gmail.com -- Stability : experimental -- Portability : non-portable -- -- A helper module to parse \"expressions\". -- Builds a parser given a table of operators and associativities. -- ----------------------------------------------------------------------------- module Text.Parser.Expression ( Assoc(..), Operator(..), OperatorTable , buildExpressionParser ) where import Control.Applicative import Text.Parser.Combinators import Data.Data hiding (Infix, Prefix) import Data.Ix ----------------------------------------------------------- -- Assoc and OperatorTable ----------------------------------------------------------- -- | This data type specifies the associativity of operators: left, right -- or none. data Assoc = AssocNone | AssocLeft | AssocRight deriving (Eq,Ord,Show,Read,Ix,Enum,Bounded,Data,Typeable) -- | This data type specifies operators that work on values of type @a@. -- An operator is either binary infix or unary prefix or postfix. A -- binary operator has also an associated associativity. data Operator m a = Infix (m (a -> a -> a)) Assoc | Prefix (m (a -> a)) | Postfix (m (a -> a)) -- | An @OperatorTable m a@ is a list of @Operator m a@ -- lists. The list is ordered in descending -- precedence. All operators in one list have the same precedence (but -- may have a different associativity). type OperatorTable m a = [[Operator m a]] ----------------------------------------------------------- -- Convert an OperatorTable and basic term parser into -- a full fledged expression parser ----------------------------------------------------------- -- | @buildExpressionParser table term@ builds an expression parser for -- terms @term@ with operators from @table@, taking the associativity -- and precedence specified in @table@ into account. Prefix and postfix -- operators of the same precedence can only occur once (i.e. @--2@ is -- not allowed if @-@ is prefix negate). Prefix and postfix operators -- of the same precedence associate to the left (i.e. if @++@ is -- postfix increment, than @-2++@ equals @-1@, not @-3@). -- -- The @buildExpressionParser@ takes care of all the complexity -- involved in building expression parser. Here is an example of an -- expression parser that handles prefix signs, postfix increment and -- basic arithmetic. -- -- > import Control.Applicative ((<|>)) -- > import Text.Parser.Combinators ((<?>)) -- > import Text.Parser.Expression -- > import Text.Parser.Token (TokenParsing, natural, parens, reserve) -- > import Text.Parser.Token.Style (emptyOps) -- > -- > expr :: (Monad m, TokenParsing m) => m Integer -- > expr = buildExpressionParser table term -- > <?> "expression" -- > -- > term :: (Monad m, TokenParsing m) => m Integer -- > term = parens expr -- > <|> natural -- > <?> "simple expression" -- > -- > table :: (Monad m, TokenParsing m) => [[Operator m Integer]] -- > table = [ [prefix "-" negate, prefix "+" id ] -- > , [postfix "++" (+1)] -- > , [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft ] -- > , [binary "+" (+) AssocLeft, binary "-" (-) AssocLeft ] -- > ] -- > -- > binary name fun assoc = Infix (fun <$ reservedOp name) assoc -- > prefix name fun = Prefix (fun <$ reservedOp name) -- > postfix name fun = Postfix (fun <$ reservedOp name) -- > -- > reservedOp name = reserve emptyOps name buildExpressionParser :: forall m a. (Parsing m, Applicative m) => OperatorTable m a -> m a -> m a buildExpressionParser operators simpleExpr = foldl makeParser simpleExpr operators where makeParser term ops = let (rassoc,lassoc,nassoc,prefix,postfix) = foldr splitOp ([],[],[],[],[]) ops rassocOp = choice rassoc lassocOp = choice lassoc nassocOp = choice nassoc prefixOp = choice prefix <?> "" postfixOp = choice postfix <?> "" ambiguous assoc op = try $ op *> empty <?> ("ambiguous use of a " ++ assoc ++ "-associative operator") ambiguousRight = ambiguous "right" rassocOp ambiguousLeft = ambiguous "left" lassocOp ambiguousNon = ambiguous "non" nassocOp termP = (prefixP <*> term) <**> postfixP postfixP = postfixOp <|> pure id prefixP = prefixOp <|> pure id rassocP, rassocP1, lassocP, lassocP1, nassocP :: m (a -> a) rassocP = (flip <$> rassocOp <*> (termP <**> rassocP1) <|> ambiguousLeft <|> ambiguousNon) rassocP1 = rassocP <|> pure id lassocP = ((flip <$> lassocOp <*> termP) <**> ((.) <$> lassocP1) <|> ambiguousRight <|> ambiguousNon) lassocP1 = lassocP <|> pure id nassocP = (flip <$> nassocOp <*> termP) <**> (ambiguousRight <|> ambiguousLeft <|> ambiguousNon <|> pure id) in termP <**> (rassocP <|> lassocP <|> nassocP <|> pure id) <?> "operator" splitOp (Infix op assoc) (rassoc,lassoc,nassoc,prefix,postfix) = case assoc of AssocNone -> (rassoc,lassoc,op:nassoc,prefix,postfix) AssocLeft -> (rassoc,op:lassoc,nassoc,prefix,postfix) AssocRight -> (op:rassoc,lassoc,nassoc,prefix,postfix) splitOp (Prefix op) (rassoc,lassoc,nassoc,prefix,postfix) = (rassoc,lassoc,nassoc,op:prefix,postfix) splitOp (Postfix op) (rassoc,lassoc,nassoc,prefix,postfix) = (rassoc,lassoc,nassoc,prefix,op:postfix)