module Opaleye.Internal.Order where
import qualified Opaleye.Column as C
import qualified Opaleye.Internal.Column as IC
import qualified Opaleye.Internal.Tag as T
import qualified Opaleye.Internal.PrimQuery as PQ
import qualified Opaleye.Internal.HaskellDB.PrimQuery as HPQ
import qualified Data.Functor.Contravariant as C
import qualified Data.Functor.Contravariant.Divisible as Divisible
import qualified Data.Profunctor as P
import qualified Data.Monoid as M
import qualified Data.Void as Void
newtype Order a = Order (a -> [(HPQ.OrderOp, HPQ.PrimExpr)])
instance C.Contravariant Order where
contramap f (Order g) = Order (P.lmap f g)
instance M.Monoid (Order a) where
mempty = Order M.mempty
Order o `mappend` Order o' = Order (o `M.mappend` o')
instance Divisible.Divisible Order where
divide f o o' = M.mappend (C.contramap (fst . f) o)
(C.contramap (snd . f) o')
conquer = M.mempty
instance Divisible.Decidable Order where
lose f = C.contramap f (Order Void.absurd)
choose f (Order o) (Order o') = C.contramap f (Order (either o o'))
order :: HPQ.OrderOp -> (a -> C.Column b) -> Order a
order op f = Order (fmap (\column -> [(op, IC.unColumn column)]) f)
orderByU :: Order a -> (a, PQ.PrimQuery, T.Tag) -> (a, PQ.PrimQuery, T.Tag)
orderByU os (columns, primQ, t) = (columns, primQ', t)
where primQ' = PQ.Order orderExprs primQ
Order sos = os
orderExprs = map (uncurry HPQ.OrderExpr) (sos columns)
limit' :: Int -> (a, PQ.PrimQuery, T.Tag) -> (a, PQ.PrimQuery, T.Tag)
limit' n (x, q, t) = (x, PQ.Limit (PQ.LimitOp n) q, t)
offset' :: Int -> (a, PQ.PrimQuery, T.Tag) -> (a, PQ.PrimQuery, T.Tag)
offset' n (x, q, t) = (x, PQ.Limit (PQ.OffsetOp n) q, t)