-- | Ring classes module NumHask.Algebra.Ring ( Distributive, Ring, StarSemiring (..), KleeneAlgebra, InvolutiveRing (..), two, ) where import Data.Int (Int16, Int32, Int64, Int8) import Data.Word (Word, Word16, Word32, Word64, Word8) import GHC.Natural (Natural (..)) import NumHask.Algebra.Additive (Additive ((+)), Subtractive) import NumHask.Algebra.Group (Idempotent) import NumHask.Algebra.Multiplicative (Multiplicative (..)) import Prelude qualified as P -- $setup -- -- >>> :set -XRebindableSyntax -- >>> import NumHask.Prelude -- | -- -- prop> \a b c -> a * (b + c) == a * b + a * c -- prop> \a b c -> (a + b) * c == a * c + b * c -- prop> \a -> zero * a == zero -- prop> \a -> a * zero == zero -- -- The sneaking in of the laws here glosses over the possibility that the multiplicative zero element does not have to correspond with the additive unital zero. type Distributive a = (Additive a, Multiplicative a) -- | A is an abelian group under addition ('NumHask.Algebra.Unital', 'NumHask.Algebra.Associative', 'NumHask.Algebra.Commutative', 'NumHask.Algebra.Invertible') and monoidal under multiplication ('NumHask.Algebra.Unital', 'NumHask.Algebra.Associative'), and where multiplication distributes over addition. -- -- > \a -> zero + a == a -- > \a -> a + zero == a -- > \a b c -> (a + b) + c == a + (b + c) -- > \a b -> a + b == b + a -- > \a -> a - a == zero -- > \a -> negate a == zero - a -- > \a -> negate a + a == zero -- > \a -> a + negate a == zero -- > \a -> one * a == a -- > \a -> a * one == a -- > \a b c -> (a * b) * c == a * (b * c) -- > \a b c -> a * (b + c) == a * b + a * c -- > \a b c -> (a + b) * c == a * c + b * c -- > \a -> zero * a == zero -- > \a -> a * zero == zero type Ring a = (Distributive a, Subtractive a) -- | A is a semiring with an additional unary operator (star) satisfying: -- -- > \a -> star a == one + a * star a class (Distributive a) => StarSemiring a where {-# MINIMAL star | plus #-} star :: a -> a star a = one + plus a plus :: a -> a plus a = a * star a -- | A is a Star Semiring with idempotent addition. -- -- > a * x + x = a ==> star a * x + x = x -- > x * a + x = a ==> x * star a + x = x class (StarSemiring a, Idempotent a) => KleeneAlgebra a -- | Involutive Ring -- -- > adj (a + b) ==> adj a + adj b -- > adj (a * b) ==> adj a * adj b -- > adj one ==> one -- > adj (adj a) ==> a -- -- Note: elements for which @adj a == a@ are called "self-adjoint". class (Distributive a) => InvolutiveRing a where adj :: a -> a adj x = x instance InvolutiveRing P.Double instance InvolutiveRing P.Float instance InvolutiveRing P.Integer instance InvolutiveRing P.Int instance InvolutiveRing Natural instance InvolutiveRing Int8 instance InvolutiveRing Int16 instance InvolutiveRing Int32 instance InvolutiveRing Int64 instance InvolutiveRing Word instance InvolutiveRing Word8 instance InvolutiveRing Word16 instance InvolutiveRing Word32 instance InvolutiveRing Word64 -- | Defining 'two' requires adding the multiplicative unital to itself. In other words, the concept of 'two' is a Ring one. -- -- >>> two -- 2 two :: (Multiplicative a, Additive a) => a two = one + one