module Number.ResidueClass.Reader where
import qualified Number.ResidueClass as Res
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.IntegralDomain as Integral
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import NumericPrelude.Base
import NumericPrelude.Numeric
import Control.Monad (liftM, liftM2, liftM4, ap)
import Control.Applicative (Applicative(pure, (<*>)))
import qualified NumericPrelude.Numeric as NP
newtype T a b = Cons {toFunc :: a -> b}
concrete :: a -> T a b -> b
concrete m (Cons r) = r m
fromRepresentative :: (Integral.C a) => a -> T a a
fromRepresentative = Cons . mod
getZero :: (Additive.C a) => T a a
getZero = Cons $ const Additive.zero
getOne :: (Ring.C a) => T a a
getOne = Cons $ const NP.one
fromInteger :: (Integral.C a) => Integer -> T a a
fromInteger = fromRepresentative . NP.fromInteger
instance Functor (T a) where
fmap = liftM
instance Applicative (T a) where
(<*>) = ap
pure = return
instance Monad (T a) where
(Cons x) >>= y = Cons (\r -> toFunc (y (x r)) r)
return = Cons . const
getAdd :: Integral.C a => T a (a -> a -> a)
getAdd = Cons Res.add
getSub :: Integral.C a => T a (a -> a -> a)
getSub = Cons Res.sub
getNeg :: Integral.C a => T a (a -> a)
getNeg = Cons Res.neg
getAdditiveVars :: Integral.C a => T a (a, a -> a -> a, a -> a -> a, a -> a)
getAdditiveVars = liftM4 (,,,) getZero getAdd getSub getNeg
getMul :: Integral.C a => T a (a -> a -> a)
getMul = Cons Res.mul
getRingVars :: Integral.C a => T a (a, a -> a -> a)
getRingVars = liftM2 (,) getOne getMul
getDivide :: PID.C a => T a (a -> a -> a)
getDivide = Cons Res.divide
getRecip :: PID.C a => T a (a -> a)
getRecip = Cons Res.recip
getFieldVars :: PID.C a => T a (a -> a -> a, a -> a)
getFieldVars = liftM2 (,) getDivide getRecip
monadExample :: PID.C a => T a [a]
monadExample =
do (zero',(+~),(-~),negate') <- getAdditiveVars
(one',(*~)) <- getRingVars
((/~),recip') <- getFieldVars
let three = one'+one'+one'
let seven = three+three+one'
return [zero'*~three, one'/~three, recip' three,
three *~ seven, one' +~ three +~ seven,
zero' -~ three, negate' three +~ seven]
runExample :: [Integer]
runExample =
let three = one+one+one
eleven = three+three+three + one+one
in concrete eleven monadExample