module Number.OccasionallyScalarExpression where
import qualified Algebra.Transcendental as Trans
import qualified Algebra.Algebraic as Algebraic
import qualified Algebra.Field as Field
import qualified Algebra.Absolute as Absolute
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import qualified Algebra.ZeroTestable as ZeroTestable
import qualified Algebra.OccasionallyScalar as OccScalar
import Data.Maybe(fromMaybe)
import Data.Array(listArray,(!))
import NumericPrelude.Base
import NumericPrelude.Numeric
data T a v = Cons (Term a v) v
data Term a v =
Const
| Add (T a v) (T a v)
| Mul (T a v) (T a v)
| Div (T a v) (T a v)
fromValue :: v -> T a v
fromValue = Cons Const
makeLine :: Int -> String -> String
makeLine indent str = replicate indent ' ' ++ str ++ "\n"
showUnitError :: (Show v) => Bool -> Int -> v -> T a v -> String
showUnitError divide indent x (Cons expr y) =
let indent' = indent+2
showSub d = showUnitError d (indent'+2) x
mulDivArr = listArray (False, True) ["multiply", "divide"]
in makeLine indent
(mulDivArr ! divide ++
" " ++ show y ++ " by " ++ show x) ++
case expr of
(Const) -> ""
(Add y0 y1) ->
makeLine indent' "e.g." ++
showSub divide y0 ++
makeLine indent' "and " ++
showSub divide y1
(Mul y0 y1) ->
makeLine indent' "e.g." ++
showSub divide y0 ++
makeLine indent' "or " ++
showSub divide y1
(Div y0 y1) ->
makeLine indent' "e.g." ++
showSub divide y0 ++
makeLine indent' "or " ++
showSub (not divide) y1
lift :: (v -> v) -> (T a v -> T a v)
lift f (Cons xe x) = Cons xe (f x)
fromScalar :: (Show v, OccScalar.C a v) =>
a -> T a v
fromScalar = OccScalar.fromScalar
scalarMap :: (Show v, OccScalar.C a v) =>
(a -> a) -> (T a v -> T a v)
scalarMap f x = OccScalar.fromScalar (f (OccScalar.toScalar x))
scalarMap2 :: (Show v, OccScalar.C a v) =>
(a -> a -> a) -> (T a v -> T a v -> T a v)
scalarMap2 f x y = OccScalar.fromScalar (f (OccScalar.toScalar x) (OccScalar.toScalar y))
instance (Show v) => Show (T a v) where
show (Cons _ x) = show x
instance (Eq v) => Eq (T a v) where
(Cons _ x) == (Cons _ y) = x==y
instance (Ord v) => Ord (T a v) where
compare (Cons _ x) (Cons _ y) = compare x y
instance (Additive.C v) => Additive.C (T a v) where
zero = Cons Const zero
xe@(Cons _ x) + ye@(Cons _ y) = Cons (Add xe ye) (x+y)
xe@(Cons _ x) ye@(Cons _ y) = Cons (Add xe ye) (xy)
negate = lift negate
instance (Ring.C v) => Ring.C (T a v) where
xe@(Cons _ x) * ye@(Cons _ y) = Cons (Mul xe ye) (x*y)
fromInteger = fromValue . fromInteger
instance (Field.C v) => Field.C (T a v) where
xe@(Cons _ x) / ye@(Cons _ y) = Cons (Div xe ye) (x/y)
fromRational' = fromValue . fromRational'
instance (ZeroTestable.C v) => ZeroTestable.C (T a v) where
isZero (Cons _ x) = isZero x
instance (Absolute.C v) => Absolute.C (T a v) where
abs = lift abs
signum = lift signum
instance (Algebraic.C a, Field.C v, Show v, OccScalar.C a v) =>
Algebraic.C (T a v) where
sqrt = scalarMap sqrt
x ^/ y = scalarMap (^/ y) x
instance (Trans.C a, Field.C v, Show v, OccScalar.C a v) =>
Trans.C (T a v) where
pi = fromScalar pi
log = scalarMap log
exp = scalarMap exp
logBase = scalarMap2 logBase
(**) = scalarMap2 (**)
cos = scalarMap cos
tan = scalarMap tan
sin = scalarMap sin
acos = scalarMap acos
atan = scalarMap atan
asin = scalarMap asin
cosh = scalarMap cosh
tanh = scalarMap tanh
sinh = scalarMap sinh
acosh = scalarMap acosh
atanh = scalarMap atanh
asinh = scalarMap asinh
instance (OccScalar.C a v, Show v)
=> OccScalar.C a (T a v) where
toScalar xe@(Cons _ x) =
fromMaybe
(error (show xe ++ " is not a scalar value.\n" ++
showUnitError True 0 x xe))
(OccScalar.toMaybeScalar x)
toMaybeScalar (Cons _ x) = OccScalar.toMaybeScalar x
fromScalar = fromValue . OccScalar.fromScalar