module Number.FixedPoint where
import qualified Algebra.RealRing as RealRing
import qualified Algebra.Transcendental as Trans
import qualified MathObj.PowerSeries.Example as PSE
import NumericPrelude.List (mapLast, )
import Data.Function.HT (powerAssociative, )
import Data.List.HT (dropWhileRev, padLeft, )
import Data.Maybe.HT (toMaybe, )
import Data.List (transpose, unfoldr, )
import Data.Char (intToDigit, )
import NumericPrelude.Base
import NumericPrelude.Numeric hiding (recip, sqrt, exp, sin, cos, tan,
fromRational')
import qualified NumericPrelude.Numeric as NP
fromFloat :: RealRing.C a => Integer -> a -> Integer
fromFloat den x =
round (x * NP.fromInteger den)
fromFixedPoint :: Integer -> Integer -> Integer -> Integer
fromFixedPoint denDst denSrc x = div (x*denDst) denSrc
showPositionalDec :: Integer -> Integer -> String
showPositionalDec den = liftShowPosToInt $ \x ->
let packetSize = 50
basis = ringPower packetSize 10
(int,frac) = toPositional basis den x
in show int ++ "." ++
concat (mapLast (dropWhileRev ('0'==))
(map (padLeft '0' packetSize . show) frac))
showPositionalHex :: Integer -> Integer -> String
showPositionalHex = showPositionalBasis 16
showPositionalBin :: Integer -> Integer -> String
showPositionalBin = showPositionalBasis 2
showPositionalBasis :: Integer -> Integer -> Integer -> String
showPositionalBasis basis den = liftShowPosToInt $ \x ->
let (int,frac) = toPositional basis den x
in show int ++ "." ++ map (intToDigit . fromInteger) frac
liftShowPosToInt :: (Integer -> String) -> (Integer -> String)
liftShowPosToInt f n =
if n>=0
then f n
else '-' : f (n)
toPositional :: Integer -> Integer -> Integer -> (Integer, [Integer])
toPositional basis den x =
let (int, frac) = divMod x den
in (int, unfoldr (\rm -> toMaybe (rm/=0) (divMod (basis*rm) den)) frac)
add :: Integer -> Integer -> Integer -> Integer
add _ = (+)
sub :: Integer -> Integer -> Integer -> Integer
sub _ = ()
mul :: Integer -> Integer -> Integer -> Integer
mul den x y = div (x*y) den
divide :: Integer -> Integer -> Integer -> Integer
divide den x y = div (x*den) y
recip :: Integer -> Integer -> Integer
recip den x = div (den^2) x
magnitudes :: [Integer]
magnitudes =
concat (transpose [iterate (^2) 4, iterate (^2) 8])
sqrt :: Integer -> Integer -> Integer
sqrt den x =
let xden = x*den
initial = fst (head (dropWhile ((<= xden) . snd)
(zip magnitudes (tail (tail magnitudes)))))
approxs = iterate (\y -> div (y + div xden y) 2) initial
isRoot y = y^2 <= xden && xden < (y+1)^2
in head (dropWhile (not . isRoot) approxs)
root :: Integer -> Integer -> Integer -> Integer
root n den x =
let n1 = n1
xden = x * den^n1
initial = fst (head (dropWhile ((\y -> y^n <= xden) . snd)
(zip magnitudes (tail magnitudes))))
approxs = iterate (\y -> div (n1*y + div xden (y^n1)) n) initial
isRoot y = y^n <= xden && xden < (y+1)^n
in head (dropWhile (not . isRoot) approxs)
evalPowerSeries :: [Rational] -> Integer -> Integer -> Integer
evalPowerSeries series den x =
let powers = iterate (mul den x) den
summands = zipWith (\c p -> round (c * fromInteger p)) series powers
in sum (map snd (takeWhile (\(c,s) -> s/=0 || c==0)
(zip series summands)))
cos, sin, tan :: Integer -> Integer -> Integer
cos = evalPowerSeries PSE.cos
sin = evalPowerSeries PSE.sin
tan den x = divide den (sin den x) (cos den x)
arctanSmall :: Integer -> Integer -> Integer
arctanSmall = evalPowerSeries PSE.atan
arctan :: Integer -> Integer -> Integer
arctan den x =
let estimate = fromFloat den
(Trans.atan (NP.fromRational' (x % den)) :: Double)
tanEst = tan den estimate
residue = divide den (xtanEst) (den + mul den x tanEst)
in estimate + arctanSmall den residue
piConst :: Integer -> Integer
piConst den =
let den4 = 4*den
stArcTan k x = let d = k*den4 in arctanSmall d (div d x)
in
(stArcTan 44 57 + stArcTan 7 239 stArcTan 12 682 + stArcTan 24 12943)
expSmall :: Integer -> Integer -> Integer
expSmall = evalPowerSeries PSE.exp
eConst :: Integer -> Integer
eConst den = expSmall den den
recipEConst :: Integer -> Integer
recipEConst den = expSmall den (den)
exp :: Integer -> Integer -> Integer
exp den x =
let den2 = div den 2
(int,frac) = divMod (x + den2) den
expFrac = expSmall den (fracden2)
in case compare int 0 of
EQ -> expFrac
GT -> powerAssociative (mul den) expFrac (eConst den) int
LT -> powerAssociative (mul den) expFrac (recipEConst den) (int)
approxLogBase :: Integer -> Integer -> (Int, Integer)
approxLogBase base x =
until ((<=base) . snd) (\(xE,xM) -> (succ xE, div xM base)) (0,x)
lnSmall :: Integer -> Integer -> Integer
lnSmall den x =
evalPowerSeries PSE.log den (xden)
ln :: Integer -> Integer -> Integer
ln den x =
let fac = 10^50
(denE, denM) = approxLogBase fac den
(xE, xM) = approxLogBase fac x
approxDouble :: Double
approxDouble =
log (NP.fromInteger fac) * fromIntegral (xEdenE) +
log (NP.fromInteger xM / NP.fromInteger denM)
approxFac = round (approxDouble * NP.fromInteger fac)
approx = fromFixedPoint den fac approxFac
xSmall = divide den x (exp den approx)
in add den approx (lnSmall den xSmall)