module Number.ResidueClass.Func where
import qualified Number.ResidueClass as Res
import qualified Algebra.PrincipalIdealDomain as PID
import qualified Algebra.IntegralDomain as Integral
import qualified Algebra.Field as Field
import qualified Algebra.Ring as Ring
import qualified Algebra.Additive as Additive
import qualified Algebra.EqualityDecision as EqDec
import Algebra.EqualityDecision ((==?), )
import qualified MathObj.Wrapper.Haskell98 as W98
import NumericPrelude.Base
import NumericPrelude.Numeric hiding (zero, one, )
import qualified Prelude as P
import qualified NumericPrelude.Numeric as NP
newtype T a = Cons (a -> a)
concrete :: a -> T a -> a
concrete m (Cons r) = r m
fromRepresentative :: (Integral.C a) => a -> T a
fromRepresentative = Cons . mod
lift0 :: (a -> a) -> T a
lift0 = Cons
lift1 :: (a -> a -> a) -> T a -> T a
lift1 f (Cons x) = Cons $ \m -> f m (x m)
lift2 :: (a -> a -> a -> a) -> T a -> T a -> T a
lift2 f (Cons x) (Cons y) = Cons $ \m -> f m (x m) (y m)
zero :: (Additive.C a) => T a
zero = Cons $ const Additive.zero
one :: (Ring.C a) => T a
one = Cons $ const NP.one
fromInteger :: (Integral.C a) => Integer -> T a
fromInteger = fromRepresentative . NP.fromInteger
equal :: Eq a => a -> T a -> T a -> Bool
equal m (Cons x) (Cons y) = x m == y m
instance (EqDec.C a) => EqDec.C (T a) where
(==?) (Cons x) (Cons y) (Cons eq) (Cons noteq) =
Cons (\m -> (x m ==? y m) (eq m) (noteq m))
instance (Integral.C a) => Additive.C (T a) where
zero = zero
(+) = lift2 Res.add
() = lift2 Res.sub
negate = lift1 Res.neg
instance (Integral.C a) => Ring.C (T a) where
one = one
(*) = lift2 Res.mul
fromInteger = Number.ResidueClass.Func.fromInteger
instance (PID.C a) => Field.C (T a) where
(/) = lift2 Res.divide
recip = (NP.one /)
fromRational' = error "no conversion from rational to residue class"
notImplemented :: String -> a
notImplemented name =
error $ "ResidueClass.Func: method " ++ name ++ " cannot be implemented"
lift98_1 :: (W98.T a -> W98.T a -> W98.T a) -> T a -> T a
lift98_1 f (Cons x) =
Cons $ \m -> W98.decons $ f (W98.Cons m) (W98.Cons $ x m)
lift98_2 :: (W98.T a -> W98.T a -> W98.T a -> W98.T a) -> T a -> T a -> T a
lift98_2 f (Cons x) (Cons y) =
Cons $ \m -> W98.decons $ f (W98.Cons m) (W98.Cons $ x m) (W98.Cons $ y m)
instance (P.Integral a) => P.Num (T a) where
fromInteger = Cons . P.mod . P.fromInteger
negate = lift98_1 Res.neg
(+) = lift98_2 Res.add
(*) = lift98_2 Res.mul
abs = notImplemented "abs"
signum = notImplemented "signum"
instance Eq (T a) where
(==) = notImplemented "(==)"
instance Show (T a) where
show = notImplemented "show"