{-# LANGUAGE RebindableSyntax #-} {- We represent a Gaussian bell curve in terms of the reciprocal of its variance and its value at the origin. We could do some projective geometry in the exponent in order to also have zero variance, which corresponds to the dirac impulse. The Gaussians form a nice multiplicative commutative monoid. Maybe we should have such a structure. It would also be useful for the Root data type and a new Exponential data type. -} module MathObj.Gaussian.Variance where import qualified MathObj.Polynomial as Poly import qualified Number.Root as Root import qualified Algebra.Transcendental as Trans import qualified Algebra.Algebraic as Algebraic import qualified Algebra.Field as Field import qualified Algebra.Absolute as Absolute import qualified Algebra.Ring as Ring import qualified Algebra.Additive as Additive import Test.QuickCheck (Arbitrary, arbitrary, ) import Control.Monad (liftM2, ) import NumericPrelude.Numeric import NumericPrelude.Base {- $setup >>> import qualified MathObj.Gaussian.Variance as G >>> import MathObj.Gaussian.ExponentTuple (HoelderConjugates(HoelderConjugates)) >>> import MathObj.Gaussian.ExponentTuple (YoungConjugates(YoungConjugates)) >>> import qualified Algebra.Laws as Laws >>> import qualified Number.Root as Root >>> import NumericPrelude.Base as P >>> import NumericPrelude.Numeric as NP >>> import Prelude () >>> import qualified Test.QuickCheck as QC >>> import Data.Function.HT (Id, nest) >>> >>> asRational :: Id (G.T Rational) >>> asRational = id >>> >>> withRational :: Id (G.T Rational -> a) >>> withRational = id -} {- | Since @amp@ is the square of the actual amplitude it must be non-negative. -} data T a = Cons {amp, c :: a} deriving (Eq, Show) instance (Absolute.C a, Arbitrary a) => Arbitrary (T a) where arbitrary = liftM2 Cons (fmap abs arbitrary) (fmap ((1+) . abs) arbitrary) constant :: Ring.C a => T a constant = Cons one zero {- | eigenfunction of 'fourier' -} unit :: Ring.C a => T a unit = Cons one one {-# INLINE evaluate #-} evaluate :: (Trans.C a) => T a -> a -> a evaluate f x = sqrt (amp f) * exp (-pi * c f * x^2) exponentPolynomial :: (Additive.C a) => T a -> Poly.T a exponentPolynomial f = Poly.fromCoeffs [zero, zero, c f] integrateRoot :: (Field.C a) => T a -> Root.T a integrateRoot f = Root.sqrt $ Root.fromNumber $ amp f / c f {- | Cauchy-Schwarz inequality: prop> withRational $ \x y -> G.scalarProductRoot x y <= G.norm2Root x `Root.mul` G.norm2Root y Hoelder inequality: prop> withRational $ \x y -> G.scalarProductRoot x y <= G.norm1Root x `Root.mul` G.normInfRoot y prop> withRational $ \x y (HoelderConjugates p q) -> G.scalarProductRoot x y <= G.normPRoot p x `Root.mul` G.normPRoot q y -} scalarProductRoot :: (Field.C a) => T a -> T a -> Root.T a scalarProductRoot f g = integrateRoot (multiply f g) {- | prop> withRational $ \x -> G.norm1Root x == G.normPRoot 1 x -} norm1Root :: (Field.C a) => T a -> Root.T a norm1Root = integrateRoot {- | prop> withRational $ \x -> G.norm2Root x == G.normPRoot 2 x -} norm2Root :: (Field.C a) => T a -> Root.T a norm2Root f = Root.sqrt $ Root.fromNumber (amp f) `Root.div` Root.sqrt (Root.fromNumber $ 2 * c f) normInfRoot :: (Field.C a) => T a -> Root.T a normInfRoot f = Root.sqrt $ Root.fromNumber $ amp f {- I would have liked to test for a monotony of norms. Unfortunately, it does not hold. Means contain a division by the size of the domain. Norms do not have this division. Means are monotonic with respect to the degree. Norms are not. We cannot turn the norms into means since the size of the domain (the complete real axis) is infinitely large. prop> :{ withRational $ \x p0 q0 -> let p = 1 + abs p0 q = 1 + abs q0 in case compare p q of EQ -> G.normPRoot p x == G.normPRoot q x LT -> G.normPRoot p x <= G.normPRoot q x GT -> G.normPRoot p x >= G.normPRoot q x :} This should also fail, but QuickCheck does not seem to try counterexamples. prop> :{ withRational $ \x p0 -> let p = 1 + abs p0 in G.normPRoot p x <= G.normInfRoot x :} -} normPRoot :: (Field.C a) => Rational -> T a -> Root.T a normPRoot p f = Root.sqrt (Root.fromNumber (amp f)) `Root.div` Root.rationalPower (recip (2*p)) (Root.fromNumber (fromRational' p * c f)) -- ToDo: implement NormedSpace.Sum et.al. norm1 :: (Algebraic.C a) => T a -> a norm1 f = sqrt $ amp f / c f norm2 :: (Algebraic.C a) => T a -> a norm2 f = sqrt $ amp f / (sqrt $ 2 * c f) normInf :: (Algebraic.C a) => T a -> a normInf f = sqrt (amp f) normP :: (Trans.C a) => a -> T a -> a normP p f = sqrt (amp f) * (p * c f) ^? (- recip (2*p)) variance :: (Trans.C a) => T a -> a variance f = recip $ c f * 2*pi {- | prop> withRational $ \x (QC.Positive a) -> G.varianceRational (G.dilate a x) == a^2 * G.varianceRational x prop> withRational $ \x y -> G.varianceRational (G.convolve x y) == G.varianceRational x + G.varianceRational y -} varianceRational :: (Field.C a) => T a -> a varianceRational f = recip $ c f {- | prop> Laws.identity G.multiply G.constant . asRational prop> Laws.commutative G.multiply . asRational prop> Laws.associative G.multiply . asRational -} multiply :: (Ring.C a) => T a -> T a -> T a multiply f g = Cons (amp f * amp g) (c f + c g) powerRing :: (Trans.C a) => Integer -> T a -> T a powerRing p f = Cons (amp f ^ p) (fromInteger p * c f) {- powerField does not makes sense, since the reciprocal of a Gaussian diverges. -} powerAlgebraic :: (Trans.C a) => Rational -> T a -> T a powerAlgebraic p f = Cons (amp f ^/ p) (fromRational' p * c f) powerTranscendental :: (Trans.C a) => a -> T a -> T a powerTranscendental p f = Cons (amp f ^? p) (p * c f) {- | > convolve x y t = > integrate $ \s -> x s * y(t-s) Convergence only for @c f + c g > 0@. prop> Laws.commutative G.convolve . asRational prop> Laws.associative G.convolve . asRational Young inequality: prop> withRational $ \x y -> G.normInfRoot (G.convolve x y) <= G.norm1Root x `Root.mul` G.normInfRoot y prop> withRational $ \x y (HoelderConjugates p q) -> G.normInfRoot (G.convolve x y) <= G.normPRoot p x `Root.mul` G.normPRoot q y prop> withRational $ \x y (YoungConjugates p q r) -> G.normPRoot r (G.convolve x y) <= G.normPRoot p x `Root.mul` G.normPRoot q y -} convolve :: (Field.C a) => T a -> T a -> T a convolve f g = let s = c f + c g in Cons (amp f * amp g / s) (c f * c g / s) {- | > fourier x f = > integrate $ \t -> x t * cis (-2*pi*t*f) Convergence only for @c f > 0@. prop> withRational $ \x y -> G.fourier (G.convolve x y) == G.multiply (G.fourier x) (G.fourier y) prop> withRational $ \x -> nest 4 G.fourier x == x prop> withRational $ \x (QC.Positive a) -> G.fourier (G.dilate a x) == G.amplify a (G.shrink a (G.fourier x)) prop> withRational $ \x y -> G.scalarProductRoot x y == G.scalarProductRoot (G.fourier x) (G.fourier y) -} fourier :: (Field.C a) => T a -> T a fourier f = Cons (amp f / c f) (recip $ c f) {- fourier (t -> exp(-(a*t)^2)) -} {- | prop> withRational $ \x (QC.Positive a) (QC.Positive b) -> G.dilate a (G.dilate b x) == G.dilate (a*b) x prop> withRational $ \x (QC.Positive a) -> G.shrink a x == G.dilate (recip a) x -} dilate :: (Field.C a) => a -> T a -> T a dilate k f = Cons (amp f) $ c f / k^2 {- | prop> withRational $ \x (QC.Positive a) -> G.dilate a (G.shrink a x) == x prop> withRational $ \x (QC.Positive a) -> G.shrink a (G.dilate a x) == x -} shrink :: (Ring.C a) => a -> T a -> T a shrink k f = Cons (amp f) $ c f * k^2 {- | @amplify k@ scales by @abs k@! -} amplify :: (Ring.C a) => a -> T a -> T a amplify k f = Cons (k^2 * amp f) $ c f