Safe Haskell | None |
---|---|
Language | Haskell98 |
Synopsis
- recip :: C a => [a]
- exp :: C a => [a]
- sin :: C a => [a]
- cos :: C a => [a]
- log :: C a => [a]
- asin :: C a => [a]
- atan :: C a => [a]
- sqrt :: C a => [a]
- acos :: C a => [a]
- tan :: (C a, C a) => [a]
- sinh :: C a => [a]
- cosh :: C a => [a]
- atanh :: C a => [a]
- pow :: C a => a -> [a]
- recipExpl :: C a => [a]
- expExpl :: C a => [a]
- sinExpl :: C a => [a]
- cosExpl :: C a => [a]
- tanExpl :: (C a, C a) => [a]
- tanExplSieve :: (C a, C a) => [a]
- logExpl :: C a => [a]
- atanExpl :: C a => [a]
- sinhExpl :: C a => [a]
- coshExpl :: C a => [a]
- atanhExpl :: C a => [a]
- powExpl :: C a => a -> [a]
- sqrtExpl :: C a => [a]
- erf :: C a => [a]
- expODE :: C a => [a]
- sinODE :: C a => [a]
- cosODE :: C a => [a]
- tanODE :: C a => [a]
- tanODESieve :: C a => [a]
- logODE :: C a => [a]
- recipCircle :: C a => [a]
- atanODE :: C a => [a]
- sqrtODE :: C a => [a]
- asinODE :: C a => [a]
- acosODE :: C a => [a]
- sinhODE :: C a => [a]
- coshODE :: C a => [a]
- atanhODE :: C a => [a]
- powODE :: C a => a -> [a]
Documentation
>>>
import qualified MathObj.PowerSeries.Core as PS
>>>
import qualified MathObj.PowerSeries.Example as PSE
>>>
import Test.NumericPrelude.Utility (equalTrunc)
>>>
import NumericPrelude.Numeric as NP
>>>
import NumericPrelude.Base as P
>>>
import Prelude ()
Default implementations.
pow :: C a => a -> [a] Source #
\m n -> equalTrunc 30 (PS.mul (PSE.pow m) (PSE.pow n)) (PSE.pow (m+n))
Generate Taylor series explicitly.
tanExplSieve :: (C a, C a) => [a] Source #
equalTrunc 50 PSE.tanExpl PSE.tanExplSieve
Power series of (1+x)^expon using the binomial series.
Power series of error function (almost).
More precisely erf = 2 / sqrt pi * integrate (x -> exp (-x^2))
,
with erf 0 = 0
.
Generate Taylor series from differential equations.
tanODESieve :: C a => [a] Source #
equalTrunc 50 PSE.tanODE PSE.tanODESieve
recipCircle :: C a => [a] Source #