numeric-prelude-0.4.3.3: An experimental alternative hierarchy of numeric type classes
Safe HaskellNone
LanguageHaskell98

MathObj.PowerSeries.Example

Synopsis

Documentation

>>> import qualified MathObj.PowerSeries.Core as PS
>>> import qualified MathObj.PowerSeries.Example as PSE
>>> import Test.NumericPrelude.Utility (equalTrunc)
>>> import NumericPrelude.Numeric as NP
>>> import NumericPrelude.Base as P
>>> import Prelude ()

Default implementations.

recip :: C a => [a] Source #

exp :: C a => [a] Source #

sin :: C a => [a] Source #

cos :: C a => [a] Source #

log :: C a => [a] Source #

asin :: C a => [a] Source #

atan :: C a => [a] Source #

sqrt :: C a => [a] Source #

acos :: C a => [a] Source #

tan :: (C a, C a) => [a] Source #

sinh :: C a => [a] Source #

cosh :: C a => [a] Source #

atanh :: C a => [a] Source #

pow :: C a => a -> [a] Source #

\m n -> equalTrunc 30 (PS.mul (PSE.pow m) (PSE.pow n)) (PSE.pow (m+n))

Generate Taylor series explicitly.

recipExpl :: C a => [a] Source #

expExpl :: C a => [a] Source #

equalTrunc 500 PSE.expExpl PSE.expODE

sinExpl :: C a => [a] Source #

equalTrunc 500 PSE.sinExpl PSE.sinODE

cosExpl :: C a => [a] Source #

equalTrunc 500 PSE.cosExpl PSE.cosODE

tanExpl :: (C a, C a) => [a] Source #

equalTrunc 50 PSE.tanExpl PSE.tanODE

tanExplSieve :: (C a, C a) => [a] Source #

equalTrunc 50 PSE.tanExpl PSE.tanExplSieve

logExpl :: C a => [a] Source #

equalTrunc 500 PSE.logExpl PSE.logODE

atanExpl :: C a => [a] Source #

equalTrunc 500 PSE.atanExpl PSE.atanODE

sinhExpl :: C a => [a] Source #

equalTrunc 500 PSE.sinhExpl PSE.sinhODE

coshExpl :: C a => [a] Source #

equalTrunc 500 PSE.coshExpl PSE.coshODE

atanhExpl :: C a => [a] Source #

equalTrunc 500 PSE.atanhExpl PSE.atanhODE

Power series of (1+x)^expon using the binomial series.

powExpl :: C a => a -> [a] Source #

\expon -> equalTrunc 50 (PSE.powODE expon) (PSE.powExpl expon)

sqrtExpl :: C a => [a] Source #

equalTrunc 100 PSE.sqrtExpl PSE.sqrtODE

erf :: C a => [a] Source #

Power series of error function (almost). More precisely erf = 2 / sqrt pi * integrate (x -> exp (-x^2)) , with erf 0 = 0.

Generate Taylor series from differential equations.

expODE :: C a => [a] Source #

sinODE :: C a => [a] Source #

cosODE :: C a => [a] Source #

tanODE :: C a => [a] Source #

tanODESieve :: C a => [a] Source #

equalTrunc 50 PSE.tanODE PSE.tanODESieve

logODE :: C a => [a] Source #

recipCircle :: C a => [a] Source #

atanODE :: C a => [a] Source #

sqrtODE :: C a => [a] Source #

asinODE :: C a => [a] Source #

equalTrunc 50 PSE.asinODE (snd $ PS.inv PSE.sinODE)

acosODE :: C a => [a] Source #

sinhODE :: C a => [a] Source #

coshODE :: C a => [a] Source #

atanhODE :: C a => [a] Source #

powODE :: C a => a -> [a] Source #