module Numeric.NonNegative.ChunkyPrivate
(T, fromChunks, fromNumber, toChunks, toNumber,
zero, normalize, isNull, isPositive,
divModStrict,
fromChunksUnsafe, toChunksUnsafe, ) where
import qualified Numeric.NonNegative.Class as NonNeg
import Control.Monad (liftM, liftM2)
import Data.Tuple.HT (mapSnd, )
import qualified Data.Monoid as Mn
import Test.QuickCheck (Arbitrary(arbitrary, shrink))
newtype T a = Cons {decons :: [a]}
fromChunks :: NonNeg.C a => [a] -> T a
fromChunks = Cons
fromNumber :: NonNeg.C a => a -> T a
fromNumber = fromChunks . (:[])
toChunks :: T a -> [a]
toChunks = decons
toNumber :: NonNeg.C a => T a -> a
toNumber = NonNeg.sum . decons
instance (Show a) => Show (T a) where
showsPrec p x =
showParen (p>10)
(showString "Chunky.fromChunks " . showsPrec 10 (decons x))
lift2 :: ([a] -> [a] -> [a]) -> (T a -> T a -> T a)
lift2 f (Cons x) (Cons y) = Cons $ f x y
zero :: T a
zero = Cons []
normalize :: NonNeg.C a => T a -> T a
normalize = Cons . filter (> NonNeg.zero) . decons
isNullList :: NonNeg.C a => [a] -> Bool
isNullList = null . filter (> NonNeg.zero)
isNull :: NonNeg.C a => T a -> Bool
isNull = isNullList . decons
isPositive :: NonNeg.C a => T a -> Bool
isPositive = not . isNull
check :: String -> Bool -> a -> a
check funcName b x =
if b
then x
else error ("Numeric.NonNegative.Chunky."++funcName++": negative number")
glue :: (NonNeg.C a) => [a] -> [a] -> ([a], (Bool, [a]))
glue [] ys = ([], (True, ys))
glue xs [] = ([], (False, xs))
glue (x:xs) (y:ys) =
let (z,~(zs,brs)) =
flip mapSnd (NonNeg.split x y) $
\(b,d) ->
if b
then glue xs $
if NonNeg.zero == d
then ys else d:ys
else glue (d:xs) ys
in (z:zs,brs)
equalList :: (NonNeg.C a) => [a] -> [a] -> Bool
equalList x y =
isNullList $ snd $ snd $ glue x y
compareList :: (NonNeg.C a) => [a] -> [a] -> Ordering
compareList x y =
let (b,r) = snd $ glue x y
in if isNullList r
then EQ
else if b then LT else GT
minList :: (NonNeg.C a) => [a] -> [a] -> [a]
minList x y =
fst $ glue x y
maxList :: (NonNeg.C a) => [a] -> [a] -> [a]
maxList x y =
let (z,~(_,r)) = glue x y in z++r
instance (NonNeg.C a) => Eq (T a) where
(Cons x) == (Cons y) = equalList x y
instance (NonNeg.C a) => Ord (T a) where
compare (Cons x) (Cons y) = compareList x y
min = lift2 minList
max = lift2 maxList
instance (NonNeg.C a) => NonNeg.C (T a) where
split (Cons xs) (Cons ys) =
let (zs, ~(b, rs)) = glue xs ys
in (Cons zs, (b, Cons rs))
instance (NonNeg.C a, Num a) => Num (T a) where
(+) = Mn.mappend
(Cons x) (Cons y) =
let (b,d) = snd $ glue x y
d' = Cons d
in check "-" (not b || isNull d') d'
negate x = check "negate" (isNull x) x
fromInteger = fromNumber . fromInteger
(*) = lift2 (liftM2 (*))
abs = id
signum = fromNumber . (\b -> if b then 1 else 0) . isPositive
instance (Real a, NonNeg.C a) => Real (T a) where
toRational = toRational . toNumber
instance (Enum a, NonNeg.C a) => Enum (T a) where
toEnum = fromNumber . toEnum
fromEnum = fromEnum . toNumber
instance (Integral a, NonNeg.C a) => Integral (T a) where
toInteger = toInteger . toNumber
quot = div
rem = mod
quotRem = divMod
divMod x y =
mapSnd fromNumber $
divModStrict x (toNumber y)
divModStrict ::
(Integral a, NonNeg.C a) =>
T a -> a -> (T a, a)
divModStrict x0 y =
let recourse [] r = ([], r)
recourse (x:xs) r0 =
let (q1,r1) = divMod (x+r0) y
(q2,r2) = recourse xs r1
in (q1:q2,r2)
(cs,rm) = recourse (toChunks x0) 0
in (fromChunks cs, rm)
instance Mn.Monoid (T a) where
mempty = zero
mappend = lift2 (++)
instance (NonNeg.C a, Arbitrary a) => Arbitrary (T a) where
arbitrary = liftM Cons arbitrary
shrink (Cons xs) = map Cons $ shrink xs
fromChunksUnsafe :: [a] -> T a
fromChunksUnsafe = Cons
toChunksUnsafe :: T a -> [a]
toChunksUnsafe = decons